
Appendix
Bayesian Spatial Modeling of Extreme Precipitation Return Levels

This appendix is for the purpose of further explaining some of the issues that arose during the
study of extreme precipitation for Colorado’s Front Range. All of the issues below are mentioned
in the manuscript, however, because of article length constraints, the discussion in the manuscript
is quite brief.

1 Prior elicitation

One may ask how ”empirical information” is used to assign the priors for the spatial parameters
β·,0 (which forms the sill of the variogram), and β·,1 (which is inversely proportional to the range
of the variogram).

The parameters in question control the spatial behavior of the data layer parameters to the latent
process that drives the extreme precipitation events. For example βφ,0 and βφ,1 control the spatial
behavior of the log-transformed scale parameter of the GPD distribution. Unlike the data, the
values of φ are not directly observable which makes elicitation about how this parameter varies
over space very difficult. Further complicating matters is the fact that we work in a space whose
coordinates are determined by climatological factors. And, unlike the other parameters (such as
α·), we are unable to use improper and uninformative priors for these parameters and obtain a
proper posterior (Berger et al., 2001).

In order to set a proper prior for β·,1 we use knowledge of the space in which the latent process is
modeled. The geographic area we model is roughly 100 x 275 miles (160 x 440 km). We set the
prior for β·,1 to be Unif [0.075, 0.6] which yields maximum range of the exponential variogram to
be about 40 miles and the minimum range to be about 5 miles. Similarly when modeling in the
climate space which has a domain of roughly [1,4] x [2,6] (see Figure 3 in the manuscript), we set
the prior for β·,1 to be Unif [6/7, 12] which yields a range roughly between .25 and 3.5 units.

It is in setting the priors for the β·,0 parameter where we utilize empirical information. The method
we employ is to take MLE estimates of the GPD parameters (e.g. φ) independently at each of the
station locations, and then fit an empirical variogram to these estimates. We then choose priors
that create an envelope around the empirical variogram (Figure 1). Recognizing that using the
data to set the priors is a non-traditional Bayesian approach, the authors choose an especially wide
envelope. The prior chosen for β·,0 was Unif [.005, .09].
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Figure 1: Shows the empirical variogram estimates in the traditional space (left) and the climate
space (right). Binned variogram estimates (points) and the SSE-minimizing variogram (solid line)
are plotted for the MLE-estimated φ parameters. The dashed lines denote the envelope of possible
variograms given the priors for βφ,0 (sill) and βφ,1 (1/range).
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2 Prior sensitivity

Estimating both the sill and range parameters in variogram models is problematic. Zhang (2004)
shows that these two parameters cannot be estimated consistently for a fixed domain. Our purpose
for estimating these parameters is to be able to interpolate the data-layer parameters (φ, ξ and
ζ) over the study area. For interpolation purposes, the individual parameters β·,0 and β·,1 are
less important than the value of their product β·,0β·,1 (Zhang, 2004; Stein, 1999), which Zhang
demonstrates can be estimated consistently.

From a preliminary sensitivity analysis and the posterior plots, it appears that the model is most
sensitive to the lower bound of the prior for βφ,1. To test this specifically, we run Model 7 with
an alternate prior of Unif [0.214, 6] for βφ,1 while keeping the prior for βφ,0 the same. This alters
the possible range of the variogram from approximately [.25, 3.5] units in the climate space to
approximately [.5, 14] units. As the domain of the climate space is [1,4] x [2,6] this prior would
seem to yield non-sensible values. However, much of the mass for βφ,1 is again near the new lower
bound (Figure 2) indicating a very long range. Clearly, the posteriors for βφ,0 are quite sensitive
to the prior. However, the mass of βφ,0 has also shifted slightly upward even though its prior was
not changed. The resulting posterior of the product βφ,0 and βφ,1 appears to be less affected by the
change in prior than the individual parameters. Although there is some difference because of the
differences in priors’ lower bounds, the posteriors of the product are similar (Figure 2, right). Figure
3 shows a scattergram of posterior realizations for three sets of priors. The scattergrams clearly
show that the realizations, though affected by the prior, fall in an area defined by the functions
xy = .01 and xy = .08. Return levels maps were produced for both the original and alternate
priors for both the pointwise mean and pointwise .025 quantile (Figures 4 and 5). Maps for both
sets of priors were nearly indistinguishable to the eye. The sensitivity of the individual range and
sill parameters to their priors has little influence on the marginal distribution of posterior return
levels.
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Figure 2: Shows the posterior distributions for βφ,0 (left), βφ,1 (center), and βφ,0βφ,1 (right). Solid
line shows the posterior given the original priors, and dashed line shows the posterior given the
alternative priors. Dotted lines show the prior distributions. Notice that despite the differences
in the posteriors for the individual parameters, the posterior of the product is similar. Notice the
range of differences is
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Figure 3: Scatterplot of the realizations of βφ,0 and βφ,1 for three different sets of priors (denoted
by dotted lines). Notice that despite differences in the individual values, the points primarily lie in
the region enclosed by the lines xy = .01 and xy = .08 (solid lines).
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Figure 4: Shows the 25-year return level point estimate (pointwise posterior mean) produced us-
ing the original priors (left), the corresponding map using the alternate priors (center), and the
difference of two (right).
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Figure 5: Shows the 25-year return level lower bound (pointwise .025 quantile of the posterior)
produced using the original priors (left), the corresponding map using the alternate priors (center),
and the difference of two (right).
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3 Data precision

Much of the data is recorded to a low level of precision (.1 inches). This causes a bias in the
parameter estimates depending on where the threshold is chosen within the precision interval. In
the original manuscript, we attempted to address this problem by selecting the threshold in the
center of the precision interval which appears to minimize the bias in the parameter estimates. The
reviewer suggests that the data should be treated as interval censored.

The authors believe that this data precision issue is a large one. Although the true precipitation
distribution is continuous, having records at such a low level of precision results in data that are
basically discrete. All of EVT is based on the assumption of a continuous distribution, and how
best to reconcile low precision data with EVT is a question beyond the scope of this paper.

As explained in the manuscript, a simulation experiment was performed to find the threshold at
which the bias in the two parameters was minimized. GPD data of sample size 200 were simulated
and then rounded, and then a GPD was fit to the rounded data at various thresholds. Figures 6
and 7 illustrate the results which indicate that the lowest bias occurs in the center of the precision
interval.

A second experiment compared the results of an interval analysis with those of simply choosing
the threshold in the center of the interval. A simple interval analysis can be performed by writ-
ing the likelihood based on interval observations rather than as exact observations. Rather than
defining the likelihood in terms of the GPD density, we defined the likelihood to be l(~x; θ) =∏n

i=1
1
d [G(xi + d/2;σu, ξ) − G(xi − d/2;σu, ξ)], where ~x = [x1, x2, . . . , xn] represents the truncated

data, G represents the GPD distribution function, and d represents the length of the interval (0.1
inches in our application). Again, we used maximum-likelihood methods in the experiments.

As before, GPD data of sample size 200 was simulated and rounded and the GPD parameters were
estimated using both the center-threshold and interval likelihood methods. Individual experiments
were run and the parameter estimates for the interval-likelihood and the center-threshold method
The two methods’ parameter estimates were practically identical for individual simulations. One
hundred such experiments were run and the mean-squared error for the two methods were compared.
The mean-squared error for the scale parameter φ was slightly lower for the interval analysis, but
the mse for the shape parameter ξ, was lower for the center-threshold method, which resulting in
a lower mean-squared error for the estimated return levels. The difference between the estimates
was small compared to the variance of the estimates as:

1
n

∑n
i=1 |φ̂intvl − φ̂center|√

V ar[φ̂intvl]
= .085 and

1
n

∑n
i=1 |ξ̂intvl − ξ̂center|√

V ar[ξ̂intvl]
= .069.

Table 1 compares the maximum-likelihood parameter estimates for both the interval and center-
threshold methods for the precipitation data at several stations. The estimates are practically
identical.
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Figure 6: Shows one example of the simulation to find the best threshold value. GPD data were
simulated and rounded and ML methods were used to fit both the original and rounded data. Dots
show the parameter estimates for the rounded data, the solid line shows estimates for the original
data, and the horizontal line shows the true parameter value.
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Figure 7: Shows the mean-squared error of the shape parameter for 100 experiments of sample size
200 each. Notice that the error appears to be minimized if the threshold is chosen in the center of
the precision interval at .25 .35 or .45 inches.
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φ ξ
Station center interval center interval
Boulder 3.75 3.74 0.091 0.098

White Rock 3.59 3.58 0.027 0.029
Allenspark 3.52 3.51 0.037 0.042

Hoyt 3.67 3.66 0.063 0.066
Manitou Spgs 3.53 3.51 0.205 0.217

Table 1: Comparison of parameter estimates using the center-threshold method verses the interval-
likelihood method (threshold = .55 inches).
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4 Threshold sensitivity

Threshold sensitivity was tested by running corresponding models with thresholds set at .35, .45,
.55, .65, and .75 inches. Sensitivity was assessed by viewing the posterior distributions of the
individual parameters and the 25-year return level. Figure 8 shows the 25-year return level posterior
for a station in the mountains, on the Front Range, and on the plains for various thresholds. Figure
9 shows the posterior for the GPD shape parameter ξ. The return level plots indicate only a little
sensitivity to the choice of threshold. Both the plains location and the Front Range location display
slightly increased values at the .35 threshold, perhaps indicating that this threshold choice is too
low for such locations. More interesting are the plots of ξ. This parameter is hard to estimate,
and it is not surprising to see some variability in the posterior due to the choice of threshold.
However, differences in the posterior ξplains (and to a lesser extent ξmountains) seem to indicate that
this parameter can be estimated reliably for thresholds above .55 inches. This sensitivity analysis
persuaded us to change our threshold from .45 inches to .55 inches. Notice that the return level
estimates for Fort Collins and Hoyt (both of which use this parameter) do not have much difference
between the .45 and .55 thresholds, indicating that the GPD scale parameter φ has also changed
at these locations to yield similar return levels despite different values for ξ.
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Figure 8: Shows the posterior distribution of the 25-year return level at three representative station
locations at different thresholds. The solid line is at .35 inches, the dashed at .45 inches, and the
dotted at .55 inches. Allenspark is a mountain station, Fort Collins is on the Front Range, and
Hoyt is on the plains.
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5 Residual dependence in the observations

The main point of Section 2.3 is to clarify the assumption we are making about spatial dependence,
i.e. that our model assumes the data are spatially conditionally independent given the stations pa-
rameters. As stated in the paper, this is not really true as one storm could yield high measurements
at more than one station location. We do feel that any remaining spatial dependence in the data
has little effect on the results. We also tried to assess how much residual spatial dependence is in
the data using the first-order variogram (Figure 10), which showed the residual dependence was of
very limited range. As a caution to general application, we note in the paper that this assumption
of conditional spatial independence could not be made in other applications such as stream flow
measurements.
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Figure 10: Shows the first-order variogram Cooley et al. (2006) used to assess residual dependence
in the data. A value of 1/6th indicates independence. Very little dependence is shown beyond a
distance of about 15 miles.

6 Independence of priors for φ(x) and ξ(x)

We assume independent priors for the GPD shape and scale parameters to allow us to model
each parameter’s relationship with the latent process individually. A priori, we know that there
should be a negative dependence with these parameters, but how to build this into the prior is
unclear. Our primary objective is to determine the spatial behavior of these parameters and this
is most expeditiously done by modeling them independently. The posterior distribution of these
parameters, however, does show a weak but significant negative dependence (Figure 11).
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Figure 11: Shows a scatterplot of the posterior realizations of φ for a plains location and ξplains.

7 Assumptions of stationarity and isotropy

The climate space uses elevation and mean seasonal precipitation to define its coordinates. Because
these coordinates are measured on different scales, there is no reason to assume a common range
parameter.

Each location in the study region corresponds to a location in the climate space. Plotting these
locations in the original scales yields a cloud of points with a domain roughly given by [4000,12000
ft] x [20,70 cm] (Figure 12). Certainly there is no reason to believe that a common range parameter
should be used in such a space. We transform these coordinates so that a common range is not
unreasonable. We treat the points as observations from a bivariate normal, estimate its parameters,
and then transform the points such that they have a covariance matrix of identity (Figure 12).
Although the transformation yields points whose domain is roughly the same scale, it does not
guarantee isotropy or stationarity.

Our assumptions of isotropy and stationarity are basically simplifying assumptions. With only 56
station locations, we believed that it would be impossible to identify non-stationarity or anisotropy.
We tested for geometric anisotropy (Cressie, 1993) in the GPD parameter φ’s spatial process.
We took the maximum-likelihood estimates for φ and fit an anisotropic variogram model using
maximum likelihood methods. The model constructs a new distance metric which requires two
range parameters βφ,1a and βφ,1b and an angle (in radians) for the direction of the major axis θ.
The point estimate for (βφ,1a, βφ,1a, θ) was (5.0, 0.8, -0.25), which gives some indication that the
data may be anisotropic, especially due to the difference in the range parameters. However, the
asymptotic standard errors of these estimates were (17.1, 3.3, 0.87) showing that an assumption of
isotropy could not be rejected with any reasonable confidence interval.
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Our assumption of an exponential variogram model is also a simplifying assumption. One could
argue that the Matérn class of variogram models would be a better model; however, using that class
would either require estimating the smoothness parameter (which is confounded with the sill and
range parameters) or a level of smoothness would have to be assumed. When modeling values that
are not observed exactly, the correct variogram model is less important than when interpolating.
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Figure 12: Shows the study area locations in the original and transformed climate space locations.
Station locations are shown with large dots in the transformed space.
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