Prediction for Max-Stable Processes via an Approximated
Conditional Density

Daniel Cooley!
Richard A. Davis?
Philippe Naveau®

Department of Statistics

Colorado State University, Fort Collins, CO USA

2Department of Statistics
Columbia University, New York, NY USA

3Laboratiore des Sciences du Climat et de 'Environnement
IPSL-CNRS, Gif-sur-Yvette, France

cooleyd@stat.colostate.edu
phone: (970) 491-5269
fax: (970) 491-7895

September 18, 2007

Abstract

The dependence structure of a max-stable random vector is characterized by its spectral
measure. Using only the spectral measure, we present a method for approximating the con-
ditional density of an unobserved component of a max-stable random vector given the other
components of the vector. The approximated conditional density can be used for prediction.
Additionally, we present a new parametric model for the spectral measure of a multivariate max-
stable distribution. This model is used to perform prediction for time series and interpolation
for spatial applications.
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1 Introduction

Often, a primary goal of a time series analysis or a spatial analysis is that of prediction (or inter-
polation in the spatial context). The data in Figure 1 are the maximum flow rate (cubic feet per
second) for each week taken from a time series of flow rates recorded at 15 minute intervals for a
river in western Colorado. Figure 2 displays the maximum ozone readings at 29 sites in a region of
North Carolina for the year 1999. These examples differ from typical time series and geostatistical
data in that they each represent a maximum over a block of time (respectively one week and one
year). We would like to perform prediction or interpolation for data such as these.

Maximum data such as that illustrated in Figures 1 and 2 are often analyzed to assess risk; that
is, to answer some question associated with the distribution’s upper tail. Given the river data,
one might wish to approximate an upper quantile of the next week’s maximum flow. Given the
ozone pollution data, one might wish to assess the probability that the annual maximum ozone
level at an unmonitored location exceeds some level of interest set by government or health officials.
Prediction in both the time series and spatial context is often done by producing a point estimate,
but a point estimate alone would be inadequate to answer questions such as the ones above. Instead
of producing just a point estimate, our goal is to approximate the entire conditional distribution
of the unobserved value given the observed data, and we focus on how well the upper tail is
approximated.

As will be explained in Section 2, both the river flow data and the ozone data could be approximated
by a max-stable model. The dependence structure of a max-stable random vector is characterized
by its spectral measure. We propose a method to use the spectral measure to approximate the
conditional density of an unobserved component given the other components of the random vec-
tor. Additionally, we introduce a new parametric model for a spectral measure which we use to
approximate unknown spectral measures in both time series and spatial applications.

The paper is organized as follows. In Section 2 we provide an overview of multivariate max-stable
distributions and max-stable processes and the role played by the spectral measure. In Section 3 we
review the parametric max stable models which have been proposed and introduce the pairwise beta
model. In Section 4 we present our method for approximating the conditional density. We follow
with Sections 5 and 6 where we analyze time series and spatial data respectively. We conclude with
a discussion section.

2 Multivariate Max—stability and Max-stable Processes

Our goal is to approximate the conditional density of an unobserved value in a process which is
approximately max-stable. We presume that the process is observed at a finite number of locations
(x1,...,2xp) (either in time or space) and therefore model a max-stable random vector. More
specifically, let Y ,,,, m = 1,2, ... be iid copies of a random vector Y = (Y (x1),...,Y (x,))T and let

T
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\/ denotes max. We assume Y is in the domain of attraction of a max-stable distribution G, that



is there exist sequences a,, and b,, such that

P (M”;b" < z> =p" (Y_b" < z) 4 G(z). (1)

a a,

We observe the first p — 1 components of M, and wish to predict M, (x)).

Characterizing the multivariate max-stable distributions is difficult, but the task is more man-
ageable if the random vector has convenient common marginal distributions. We will henceforth
assume that G has unit Fréchet marginals; that is G;(z;) = exp(—z; ') for i = 1,...,p. There is
no loss of generality in this assumption, as the marginals of G must be univariate max-stable and
Resnick (1987) shows that the max-stable property and the domain of attraction are preserved
under a monotone transformation between max-stable marginals.

Assuming Y is in the domain of attraction of a multivariate max-stable distribution with unit
Fréchet marginals, then b,, = 0. Taking logarithms and applying Taylor series approximations to

(1), we get
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The random vector Y is known to be regularly varying with index 1. Multivariate regular variation
can be characterized by the relation

nP (Z’ c ) (), (3)

where v denotes vague convergence, and p is a positive Radon measure on [0, 00]? \ {0} (Resnick,
1987). Furthermore it is known that p is a product measure in terms of “radial” and “angular”
components. Let B be the unit ball, i.e. {z e R : ||z|| =1} If A={z e R : ||z]| > r;2/||z €
B}, where B is a set on the unit ball B, then u(A) = =1 x H(B) where H is a positive measure
on B and is known as the spectral measure. Many parametric models for max-stable subfamilies
use the norm ||z|| = |21 + ...+ |%p|, and we henceforth follow this convention. Hence B becomes
the (p — 1)-dimensional unit simplex S, = {w € [0,1]P : w1 + ... + w, = 1}.

Putting together equations (2) and (3), the limiting distribution for component-wise maxima can
be written in terms of p:

G(z) = exp(—p[0, 2]%). (4)

To convert the radial and angular components into cartesian coordinates, the exponent measure
function

V(z) = u{[0, 2]} = / \/ 2 dH (w (5)

pzl

is defined. The only conditions on H(w) are that
/ widH(w) =1 (6)
SP

for all ¢ = 1,...,p, which enforces the marginals to be unit Fréchet. Condition (6) has a nice
geometric interpretation. Notice that from (6) we obtain |, s, AH (w) = p and therefore the center

of mass fS widH (w /fs dH(w) for i =1,...,p) of H must be at the point w = (1/p, ...1/p).



If V is differentiable, then H can be decomposed into densities which exist on the interior and on
each of the lower-dimensional subspaces of Sp,. Following Coles and Tawn (1991), let .S} . denote
the lower-dimensional subspaces of S, where [ = 1,...,p is the dimension of the subspace and
¢ = {vi,...,y} is an index variable of the subspaces of size I. The subspaces S;, = {w € S, :
w; = 0,1 ¢ c,w; > 0,5 € ¢} produce a disjoint partition of S),. S . is isomorphic to the interior of
the (I — 1)-dimensional unit simplex, and S, = |J; . Si.. Let h;. be the density on S;.. Given a
spectral measure H (w), one must evaluate the integral in (5) to find V(2z), which is often impossible
analytically. However, it is relatively easy to obtain H(w) given V(z). Coles and Tawn (1991)
showed that the density h; . can be obtained via the relation

ov 1
] 782,’0[ - |’2Hp+1 hl,C(z/HZH)' (7)
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We refer to the h; . as the spectral densities, and if all the mass of H is on the interior of S}, then
hi . =0 for | < p and we denote h, . as hp.

A max-stable process is simply the infinite-dimensional analogue to a max-stable random vector. As
in the finite-dimensional case, max-stable processes are the limit process of maxima of iid random
processes, and we say that Y'(z) is in the domain of attraction of Z(z) (see de Haan (1984)) if

where My(x) = V,,—;  , Ym(2), Yim(x),m = 1,2,... are independent copies of Y (x), and <
denotes convergence of all finite-dimensional distributions. As the data in Figures 1 and 2 represent
(respectively weekly and annual) maxima, we assume they can be well-approximated by a max-
stable process.

Several related dependence metrics have been suggested to summarize the amount of dependence
in a multivariate max-stable distribution (Coles et al., 1999; Joe, 1993; Cooley et al., 2006); we use
the extremal coefficient (Smith, 1990; Schlather and Tawn, 2003). The pairwise extremal coefficient
is given by ¢; ; = V(c; ), where ¢; ; is the p-dimensional vector with components ¢; = 1,¢; =1
and ¢ = oo for k # i or j. The dependence metric can be understood via the relation

P(max(Z;, Zj) < z) = exp[-V (z¢i5)] = exp[—2"V(eiy)] = (exp[-2z1]))? = (P(Z1 < 2))%9;

that is, the pairwise extremal coefficient is the effective number of independent random variables in
the bivariate couple. Hence ¢; ; € [1,2] and as ¢; ; increases, the amount of dependence decreases.
Schlather and Tawn (2003; 2002) describe higher-order extremal coefficients, but we focus only on
pairwise dependence.

3 Parametric Models

Since any spectral measure H which satisfies equation (6) will generate a valid multivariate max-
stable distribution, it is impossible to characterize the entire family of distributions with a para-
metric model. Nevertheless, there have been some parametric subfamilies suggested which can
capture important behavior and which have been used to successfully model many applications.



While several models have been suggested for the bivariate case such as the bilogistic (Joe et al.,
1992) and polynomial (Nadarajah, 1999), we concentrate on models which can (theoretically) han-
dle any finite dimension. The book by Kotz and Nadarajah (2000) gives a collection of multivariate
extreme value distributions. The parametric models can be divided into two classes. The first class
gives a parametric model for the exponent measure function, V'(z;8), from which one can obtain
the spectral measure via (7). The second class models the spectral density h,(w;8) directly.

The most widely known multivariate extreme value distribution is the logistic (Gumbel, 1960) which

has exponent measure function V(z;a) = (37, z{l/a)a for 0 < a < 1. Dependence between the
components increases as a decreases. However, because it is characterized by a single parameter o,
it is inadequate to model situations where dependence between components differs, such as most

any spatial application or time-series application where more than one lag is modeled.

The asymmetric logistic (Tawn, 1988) and the negative logistic (Joe, 1990) are two parametric
multivariate max-stable models which are defined by an exponent measure function and which can
handle different levels of dependence between the components. One difficulty of these models is
that they have a large number of parameters; in the three dimensional case the asymmetric logistic
has sixteen parameters, twelve of which can be freely chosen. Another possible disadvantage of
these models is that both achieve the center-of-mass condition by putting mass on the edges and
vertices of the simplex S, resulting in a discontinuous spectral measure.

Alternatively to defining a parametric model for V(z;0), parametric multivariate max-stable dis-
tributions can be defined in terms of the spectral density h,(w;#). Coles and Tawn (1991) showed
that if h* is a positive function on S, with finite first moments m; = fSp w;h*(w; 0)d(w), then

P
.0) — —(p+1 g (WL mpWp .

hy(w;0) = (m - w)~( )jl;[lm]h (m‘w,...,m'w,o) (9)
is a valid spectral density which has all its mass on the interior of S,. In effect, if one thinks of
h* as a (perhaps unnormalized) density on Sy, then (9) alters the density so that it has center
of mass at (1/p,...,1/p) and total mass of p. Coles and Tawn (1991) used their technique to
create a max-stable model from the Dirichlet density. The p-dimensional Dirichlet spectral density
model has p parameters, ;,7 = 1,...,p and can be asymmetric. Coles (1993) found the Dirichlet
model preferable to the logistic and negative logistic models when fitting simulated spatial rainfall
extremes. A disadvantage of this model is that because one must apply (9), the spectral density’s
parameters are largely uninterpretable.

The time-series and spatial applications we have in mind led us to search for a new spectral density
parametrization. In both time-series and geostatistics where Gaussian processes play a dominant
role, there is a tradition of modeling pairwise dependences. In time series, pairwise dependence is
modeled as a function of the lag between the pair of interest. In geostatistics, pairwise dependence is
modeled as a function of the distance between the two locations. Although a max-stable distribution
cannot be uniquely specified by its pairwise dependences, we aim to construct a model which
sensibly models the pairwise dependences and which is useful in a variety of applications.

In contrast to the approach of Coles and Tawn (1991), we directly construct a spectral density



hp(w). We call the model given by

hp(wia, B) = Kp(a) > hij(wi,wiia, Biy), (10)
1<i<j<p
where hy j(wi, wis o, Bij) = (wi+w;))P VDA = (w; + w;))* 7! x

F(%@j)( w; >Bi’j_1< w; >Bi’j_1
(F(ﬁi’j))g w; + w; w; + w;

the pairwise beta model. The function h; ; in (10) consists of two parts. The first part, determined
by the parameter o > 0, simply draws the mass of the density toward the center of the simplex,
i.e., the point (1/p,...,1/p). So a has some control over the total amount of dependence in the
model. The second part is basically a symmetric bivariate beta distribution determined by the
parameter 3; ; > 0. The (g) parameters, (3; ;, can be used to increase or decrease the pairwise

dependence between the ith and jth components. The factor K,(a) = (i(fl_)% F(ap_a_l;fg;)r(a -

is a normalizing constant. It is shown in Appendix A.1 that

/ wihp(w; o, B)dw =1 (11)

Sp

and therefore h, is a valid spectral density. On a side note, pilhp(w) provides a new model for a
density on the unit simplex.

The pairwise beta spectral measure model has several nice properties. The spectral measure allows
for asymmetry, has all its mass on the interior of S, and is continuous. Because (9) is not used,
its parameters are interpretable as described in the previous paragraph. Additionally, the pairwise
beta model has (’2’) B-parameters which relate to the amount of pairwise dependence, which is often
of primary interest in spatial and time series applications.

4 Prediction

There has been little attention in the literature paid to the prediction problem for extremes. In
a time series setting, Davis and Resnick (1989, 1993) define a distance d between the components
of a bivariate max-stable random variable, and suggest a method of prediction which minimizes
the distance between the observed component and the predictor. In fact, their distance metric
can be related to the extremal coefficient by d = 2(¢ — 1). Rather than relying on extreme value
theory, Craigmile et al. (2006) comes at the problem of spatial interpolation for high values from
the geostatistical point-of-view and adjusts the loss function of the kriging predictor. de Haan and
Pereira (2006) state that the theory they develop for spatial max-stable processes can be used to
solve problems in spatial prediction, but the authors do not tackle the problem directly within
the article. It is important to note that the problem studied here differs from the one studied
by Heffernan and Tawn (2004), among others. Whereas their goal was to assess the probability
of an unlikely multivariate event (given no conditional information), our the goal is to perform
prediction for an unobserved location given other nearby observations. Because a point estimate
may be insufficient to answer questions associated with the upper tail, we propose estimating the
conditional distribution of the unobserved component.



If V(2z) is known and is differentiable, then the conditional density can be calculated exactly.
As seen in Section 3, the models where V(z) is defined explicitly are limited and may not handle
asymmetry well. Given models for which only h,(w) is explicitly defined, one should still be able to
approximate the conditional density as all the dependence information is contained in the spectral
measure. Provided that ||z|| is large, then V(2z) = p{(0, z]°} is small and

G(z) =exp(—V(z)) =~ 1-V(2). (12)
Then, for ||z|| large, (7) relates the joint density directly to the spectral density:

oP 1 z
o) gy V= et () "

and the conditional density can be approximated by
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where 2* = (21,...,2p—1,(). The denominator in (14) must be evaluated numerically, but it is
easily done as it is a one-dimensional integral. When assessing risk, our interest lies in cases when
||z|| is large, and thus we proceed using the approximation in (14).

gZp\Z1,.A.,Zp71(Zp|Zlﬁ s ’prl) ~ (14)

We test the approximation in (14) by simulating trivariate max-stable random variables with a
symmetric logistic dependence structure. Because both V(z) and h(w) are known for this model,
we can compare the actual conditional density of the third component given the first two to the
approximated conditional density. Figure 3 illustrates how the approximation in (14) improves with
|z||. Figure 4 shows results for repeated simulations: 10000 trivariate symmetric logistic random
vectors were simulated and the conditional density was approximated for the largest 3500 triples
(as determined by the sum of the first two components). The rank histogram in Figure 4 records
which decile of the approximated conditional density the third component fell. Additionally a qq
plot is constructed; since each conditional density is unique, we calculate the quantile of the hidden
component as approximated by our conditional density and create the plot from these values. As
the histogram is nearly flat and the qq plot closely tracks the 45-degree line, it shows that when
the observed values are large and when the spectral measure is known, the conditional density is
well approximated with the method described in this section.

5 Time Series Application

We analyze river flow rate data for the Crystal River, located in the mountains of western Colorado.
The US Geological Survey (USGS) records the data from a nationwide network of stations which
monitor surface water levels and additionally provides a web interface to the national water infor-
mation system (NWIS). The Crystal is a relatively unaltered river and the remarks associated with
this particular monitoring station (#09081600) state that there are only a “few small diversions
for irrigation upstream from station”. Consequently, there is little if any protection from potential
flood damage.



The river flow time series (Figure 1) is obviously influenced by seasonal effects, most notably,
snowmelt in the early summer. In Appendix A.2 we outline the method we use to create the
deseasonalized time series shown in Figure 5.

Several max-stable time series models have been proposed. One can construct a max-stable process
by using moving maxima. Davis and Resnick (1989; 1993) investigated properties of max-ARMA
time series models, which are infinite moving maxima processes and max-stable analogues to linear
time series models. Deheuvels (1983) and Zhang and Smith (2004) proposed max-stable processes
based on multiple moving maxima sequences. A perceived shortcoming of all these moving maxima
processes is that the spectral measure has mass only at discrete locations. Alternatively, one can
easily construct a first-order Markov process that is max-stable using any model for the exponent
measure function or spectral measure. Coles and Tawn (1991) use the first-order Markov approach
based on the bivariate logistic model and Smith et al. (1997) use the approach to model exceedances
over a threshold. Extending the Markov approach beyond first order is not simple as additional
constraints must be met to generate a stationary sequence.

We transform the marginal of the deseasonalized time series to unit Fréchet by fitting a generalized
extreme value (GEV) distribution. The GEV is the parametric form for the family of univariate

71/6} . Ignor-

extreme value distributions and has distribution function G(z) = exp [— (1 +¢ %)
ing dependence, we use all the weekly data to estimate the GEV parameters, but fitting every
fourth observation yields similar parameter estimates. We obtain parameter estimates (fi,5,&) =

(0.21,0.91,0.072); the small positive £ value indicates a slightly heavy tail.

Based on acf and pacf plots of the deseasonalized Crystal River data, it appears that prediction
should be based on the previous two observations. This rules out the first-order Markov approach,
and as our goal is to model the conditional density, we choose not to use a moving maximum model
because of its spectral measure properties. Rather than fitting a stationary model to the entire
series, we simply model any given triple of the series with a trivariate pairwise beta model.

The three dimensional pairwise beta has parameters («, 512, 61,3, and f2,3), and it can be shown
that if 512 = (2,3, then ¢12 = ¢ 3 which we assume. We denote the lag 1 parameters (52 and
B2,3) by f—1 and similarly denote the lag 2 parameter 3; 3 by f_2. To estimate the parameters, we
use a method-of-moments type approach. We estimate the lag 1 and lag 2 extremal coefficients,
¢—1 and ¢_o, using the madogram (Cooley et al., 2006; Naveau et al., 2006). We then use a plug-
in method to find parameters [«, 51, 8—2] which yield a trivariate pairwise beta model that has
these extremal coefficients. Each pairwise extremal coefficient is related to the parameters via the
integral

(bm-:/s max(w;, w;)hy(w; o, B)dw. (15)

This integral cannot be evaluated analytically; however, it can be approximated via Monte Carlo
(MC) methods. For the trivariate pairwise beta, we have three such integrals. Parameters (a, 3)
must be found which agree with the set of extremal coefficients; this optimization problem requires
the set of integrals corresponding to the set of extremal coefficients to be evaluated repeatedly
via MC. We have thus far limited our investigations to three dimensional cases (2 observed values
+ 1 value to predict) because of the computational challenges associated with fitting a spectral
density model, but there is nothing in the prediction method that is limited by the dimension of
the problem.



The estimated extremal coefficients for the unit-Fréchet transformed time series were ¢_; = 1.36
and ¢_o = 1.49. A pairwise beta model with [a, 5_1,5-2] = [1,16,0.7] yielded the extremal
coefficient estimates. The spectral density of this model is shown in the left panel of Figure 6, and
the strong dependence between the two pairs of lag-1 components is clearly illustrated.

Turning our attention now to prediction, we break the time series up into non-overlapping triples,
and use the first two observations to predict the third which we hide from view. We use the method
described in Section 4 to approximate the conditional density of the third component. Because we
are interested in large events, we apply the method to the 75 largest (as determined by the sum
of the first two components) triples. We test the fit of our approximated conditional densities by
again constructing a rank histogram and qq plot (Figure 7). As expected, there is some variation
in the histogram and some deviation from the 45-degree line in the qq plot as the pairwise beta
spectral density fit to the time series triples is not the true spectral density. Nevertheless, as the
rank histogram is neither dramatically u-shaped nor spiked and the qq plot seems to track the
45-degree line well, Figure 7 shows that the conditional densities are reasonably approximated.

We compare our results to those obtained from a traditional time series model. We fit an AR(2)
model using Yule-Walker estimation to the deseasonalized weekly maximum data. This model also
uses only the previous 2 observations to predict the third. If we compare the point estimate pre-
dictor of the AR(2) model to a point estimate predictor (median) obtained from our approximated
conditional distribution, the AR(2) point estimate slightly outperforms the one obtained from our
model. However, our primary interest is in comparing the upper tail estimates of the two models.
Using our method, we are easily able to estimate the 95% quantile of the approximate conditional
density on the unit Fréchet scale which is then transformed back to the original marginal distri-
bution. For the AR(2) model, we make three different assumptions for the noise: (1) that it is
Gaussian distributed with the estimated variance of .88, (2) that it is t-distributed with 14 degrees
of freedom to mimic the tail weight (also with variance 0.88), and (3) that it has the empirical dis-
tribution given by the residuals. For each of the three AR(2) models, we also find the 95% quantile
for the predicted value. We found these values for the 75 largest triples used to make Figure 7, and
compared them to the actual observations. Of the 75 observations, 6 (8%) exceeded the estimated
95% quantile of our model, whereas 9 (12%) exceeded the 95% quantile of each of the three AR(2)
models. This seems to indicate that our model better predicts the probability of an occurrence in
the upper tail of the river flow time series than does the traditional time series model. Additionally,
we note that this data is only slightly heavy-tailed (f = 0.072), and we conjecture that if the data
had a heavier tail, the improvement may be even more significant.

We also compare our results to an alternative max-stable time series model. Davis and Resnick
(1993; 1989) proposed max-ARMA time series models which are given by the recursion

Xi=p;i Xy 1 V...V SOpXt—p VZiN 121NV ...V ﬂth_q,

where {Z;} is iid with common distribution function P(Z; < 2) = exp(—az™!). We fit a max-AR(2)
model to the unit-Fréchet transformed data. If the Crystal River data were in fact generated by
a max-AR(2) process, the model parameters could be estimated exactly. Since the data were not
generated in this manner, fitting a max-AR (or more generally, any moving maxima) model is not
straightforward. We again use a method-of-moments type approach based on our earlier estimates
for ¢_1 and ¢_2 to obtain ¢; = 0.36 and ¢2 = 0.51. Using results from Davis and Resnick (1989)
and a plug-in approach, our predictor is Xt =01 X1 VP2 Xio.



| c=15 | ¢c=2 [c=3
max-AR(2) | 28 (37%) | 10 (13%) | 3 (4%)
condt’l median | 14 (19%) | 7 (9%) | 2 (3%)

Table 1: The values for 1,y ¢ ., for both the max-AR(2) predictor and the predictor obtained
by taking the median of the approximated conditional density. It appears that the point predictor
obtained from the approximated conditional density outperforms the max-AR predictor by this loss
function.

The max-AR approach yields only a point predictor, which we compare to the median of the
approximated conditional density. We compare the predictors’ skill by examining the prediction
errors (absolute and squared) as well as the indicator function 1 (X)X, >cp for ¢ = 1.5,2,3 which
we use as a measure of the predictors’ ability to foresee large occurrences. We again look at the
same “largest” 75 triples in the time series as before. The mean absolute error of the max-AR
predictor and for the conditional density median are 1.11 and 1.03 respectively, while the mean
squared error for the two models are 2.22 and 2.29 respectively, indicating that the two predictors
are very comparable by these measures. However, Table 5 shows the risk scores for the two pre-
dictors. It appears that the point predictor obtained from the approximated conditional density
outperforms the max-AR predictor by this loss function. Perhaps most importantly, our method
yields a continuous approximated conditional density whereas a conditional density obtained from
a max-AR model would be discontinuous because of the nature of its spectral density.

6 Spatial Applications

6.1 Simulated Max-stable Random Fields

We now turn our attention to the spatial prediction problem. We first perform prediction on simu-
lated fields and use a procedure by Schlather (2002) to generate fields with unit Fréchet marginals
on a 40 x 40 grid. The fields have a known bivariate dependence structure where the exponent
measure function for (Z(x1), Z(x2)) is given by

V(z1,29) = 1/2(27 1 + 25 ) (1 + /1 — 2(exp(—h/p) + 1)z129(21 + 22) 2,

where h is the Euclidean distance between x1 and x5. The exponent measure function is not known
for higher dimensions.

We apply our method to a simple spatial prediction problem. We assume that we observe the
values at two locations Z(z1) and Z(x2) and try to predict the value at a third location Z(z3).
In our examples 1 = (20,27), 2 = (17,23), and x3 = (20,20). Because of the known bivariate
dependence, the pairwise extremal coefficients are ¢1 9 = 1.34, ¢13 = 1.28, and ¢o3 = 1.22. We
approximate the three-dimensional spectral measure given by the three locations in the field using
the pairwise beta model and use the same method-of-moments approach as in the time series
example to obtain (a; f1,2, 81,3, 02.3) = (4.3;0.87,4.4,74). The corresponding spectral measure in
the right panel of Figure 6 shows the strongest dependence between components 2 and 3 which are
the closest of the pairs of points.
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Figure 8 shows the approximated conditional densities for the third component given the first two
components for three simulated fields. Figure 9 is a histogram and qq plot for the largest 300 of 1000
simulated fields (largest once again determined by the sum of the observed components). The rank
histogram shows that the the model captures most of the behavior of the conditional density as it is
neither dramatically spiked nor u-shaped which indicates a poor representation of the conditional
distribution. The height of the leftmost bar of the histogram indicates that the conditional density
is poorly approximated for low values. This model underrepresents the probability of a very low
observation, as the histogram shows that more of the points than would be expected occurred in
the first decile of the conditional distribution. Consequently, the qqg-plot is also shifted. Despite
the fact that the pairwise beta model under-represents the probability of a small value, the upper
tail of the conditional distribution appears to be well modeled.

As mentioned in the introduction, one of the advantages to approximating the entire conditional
distribution is that it allows one to assess the probability of exceeding some specified value at
the unmonitored location given the values of the other two. From each approximate conditional
density, we estimate the probabilities that the hidden value is greater than 20 and 50 which roughly
correspond to the 0.95 and 0.98 quantiles of the marginal distribution. This was done for the
largest 300 of the 1000 simulated fields (as measured by the sum of the observed locations Z(x1)
and Z(x2)). We use an ROC (receiver operating characteristic) plot (Figure 10) to show the skill
of the conditional density at predicting exceedances. ROC measures the ability of the forecast
to discriminate between two alternative outcomes, in this case an exceedance or non-exceedance.
The ROC plot is constructed by first ordering the simulations by their estimated probability of
exceedance. A threshold is then moved through the ordered list and at each level the proportion
of exceedances above the threshold is plotted verses the proportion of false positives above the
threshold. The ROC plot has endpoints (0,0) and (1,1) and predictive ability increases as area under
the curve increases. Figure 10 shows that the conditional density does a good job of predicting
exceedances of both levels as the ROC curves for both have sharp corners.

6.2 Ozone Data

The last data set we examine is a ground-level ozone data set. The data consists of ozone mea-
surements for the summer months of the years 1995-1999, and we focus on 29 stations found in
North Carolina, many of which have incomplete data. This is a subset of data studied by Gilleland
et al. (2006) who modeled how the parameters of an extreme value distribution varied over an
area of the eastern United States which encompasses North Carolina. Gilleland et al. estimated
a region-wide £ parameter and used thin-plate splines to model how the other parameters of the
Generalized Pareto distribution (GPD) varied. Since we are interested in annual maxima, we use
Gilleland et al.’s GPD parameter estimates to obtain GEV parameter estimates (u;, ;) for each of
the monitoring stations. Combining these with the regional estimate é = —0.31 (bounded tail), we
then transform the annual maximum measurements at each station to have a common unit Fréchet
distribution.

We assume that the transformed measurements come from a field which is stationary, has unit
Fréchet marginals, and is isotropic. We use the madogram (Cooley et al., 2006; Naveau et al.,
2006) to estimate dependence between the annual maxima as a function of distance. An exponential
model was fit to the madogram estimates by least-squares, and then this model was transformed

11



to yield an estimate for the extremal coefficient as a function of distance.

We apply our prediction method to three stations located near the city of Charlotte which are
marked with an ’X’ in Figure 2. These stations were chosen as they were the three closest stations
which had sufficient records for all five years of the study period. Even between these three closely

A~

located stations, there is weak dependence in the annual maxima (¢ = (1.95,1.84,1.67)).

Since we have only 5 sets of annual maxima, we are not able to restrict our attention to the
largest observations as we did with the earlier time series and spatial examples. Because of this,
an slight adaptation must be made to our method to obtain a reasonable approximation for the
conditional density. To obtain a density, we must take partial derivatives of our joint distribution
G(z) = exp(—V(2)). In contrast to (12), rather than approximating before we take the partials,
we proceed by differentiating to obtain (in our three-dimensional case):

B AV (z)dV(z)dV(z) 0*°V(z)oV(z)
g(z) B eXp(—V(z)) 621 822 az;; + 821822 82’3
0%V (z) 0V (2) N 0%V (z) 0V (2) n BV (2)

i 16
02’182’3 822 62’2823 821 82162’2823 ( )
When z is large enough in all components, exp(—V(z)) ~ 1 and the partials other than %

are near zero, resulting in the earlier approximations. However, when z is small, exp(—V'(2)) is
near zero.

For the ozone application, we need to bound the lower tail of the approximated conditional density
to keep it from overwhelming the normalizing integral. In this three dimensional application

V(z) :/ max (“’1“’2“’3> dH (w)dw.

As z3 — 0, zzmax(w;/z;) increases to ws, so that by an application of the dominated convergence
theorem, 23V (2z) — fsp w3dH (w) = 1, thus V(z) ~ 23 *. In the ozone application we approximate
the joint density with

1 z
9(z) ~ exp(—1/z3) Hz|y(p+1)h < >

12|

and approximate the conditional density by normalizing as before.

We again use the pairwise beta model, with o« = .15 and § = (0.01,0.2,0.8) which approximates
the estimated extremal coefficient values. The conditional density (on the unit Fréchet scale) of the
annual maximum measurement at the central station given the measurements at the northern and
southern stations (see Figure 2) is approximated and then is transformed back to the original scale
of the observations. Figure 11 shows the approximated conditional densities for the annual maxima
for each of the five years. As would be expected with weak dependence, the conditional densities
do not differ dramatically from the marginal density. However we see that the conditional density
shifts upward for years where the observed stations’ measurements are relatively high (e.g., 1996
and 1998) and shifts downward when the observed measurements are relatively low (e.g., 1995).

12



7 Discussion and Conclusions

We have proposed a method for approximating the conditional density of an unobserved component
of a max-stable vector given that the other components are observed. The approximation method
relies on a model for the spectral measure of the max-stable distribution rather than a model
for the distribution itself. As few max-stable distributions are known explicitly and these are
rather restrictive, we feel that specifying only a model on the spectral measure is a strength of the
method. In both time series and spatial contexts, we have shown that a conditional density based
on an approximated spectral measure largely captures the behavior of the unobserved component.
By approximating an entire conditional density, we obtain more information than a simple point
estimate, especially since we are most interested in quantities in the upper tail. We have shown
that the method estimates well a high quantile of the conditional distribution and has good skill
at predicting whether the unobserved component exceeds some level of interest.

A current challenge of modeling multivariate extremes is finding an adequate model for either the
exponent measure function, or alternatively, the spectral measure. In this work, we have introduced
a new model for a spectral measure, the pairwise beta. The pairwise beta has all its mass on the
interior of the spectral measure, has parameters that have some intuitive understanding, and allows
some control over the amount of dependence between a pair of components. In extremes, it is
relatively well understood how to measure pairwise dependences, but it is not as well understood
how to measure higher-order dependences, so having a model largely based on pairwise dependencies
has advantages. In both the time series and spatial examples, the pairwise beta model proved useful
and we were able to use pairwise dependences to obtain a reasonable approximation to the spectral
measure. It is important to note however that the proposed prediction method is in no way reliant
on the pairwise beta model and could be used with any spectral measure model.

Finally, one might argue that we are attempting to solve an artificial problem. It is true that both
the data in Figures 1 and 2 are “artificial” in that we have more than just the weekly and annual
maximum readings. There are examples where only the maximum data are recorded, but as our
ability to store data increases exponentially, these instances are becoming more rare. To this po-
tential criticism, we argue that our hope is that our block-maximum methodology can be extended
to an exceedance-over-threshold methodology, as has been the case for extremes historically. Recall
from Section 2 that the spectral measure relates to the intensity measure of the limiting point
process. As we are modeling the spectral measure and using it to obtain our conditional density,
it seems likely that this methodology can be extended.
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A Appendix

A.1 Center of mass condition for the pairwise beta model

Theorem 1 The pairwise beta model, h,(w;«, B3) as defined (10), is a valid spectral measure.

It suffices to show that fs wrhp(w; o, B)dw =1 for all k = 1,...,p. Without loss of generality, we only
consider the case k = 1. From (10) we have

| wih(wia.p)dw (17)
Sp
= / w1 Kp(a) Z hiﬁj(wi,wj;a,ﬁm)dw
Sp 1<i<j<p
= Z / wlh’L] W;, Wj; Q& 51])
1<z<]<p

= Kp(a) Z/ wlhlj wlawjv 7ﬂ1] dw+ Z / w1h2] wlijva 5Z])dw

2<i<j<p

P
= Ky(a) Zh,1,j+ Z Ll (18)
_j:2

2<i<j<p

where ILLJ = fSp wlhl,j(wl,wj; a,ﬁl,j)dw and Il,i,j = fSp wlhi,j(whwj; a,Bi’j)dw. We first examine Il,l,j
and consider the case j = 2. Suppressing the dependence of h; 2 on o and 31 2, we have

1 1—wq 17(w1+w2) 17(w1+w2+...wp_2)
1171,2 = \/]3/ / / . / w1h172(w1, wg)dwp_1 . d’wgd’w1

w1=0 Jwa=0 w3z=0 wp—1=0

1 1—wy 17(71)1*%11]2) 17(w1+w2+‘..wp,2)
= \/ﬁ/ / w1h12 wl,wg)/ / dwp_l...dwgdwl
wi1= 0

w3:0 wp,1:0

1—wq
= v / / wy(wr + wa) DL (g 4 )
w1= =0

oy (wrm) | Gvm)
(1= (w1 +wy))P™®
(p—3)!

After the change of variables 8 = w1 /(w1 +ws) and r = wy +ws, which has Jacobian |J| = ‘

dedwl .

Owy /80  Ow;p/Or
Owy /80  dwg/Or

= r, we obtain

2 (1 =r)p3
hoe = f/ / oy (1 gyt DO v g gyt B0 g
6=0 Jr=0

( (5, 2)) (p—3)!
_ b T(2612) g, Biy—1 HP=Da=142(] _ pyoatp—4g,.
(p— 3) / (T(B1,2))? o 1=6) @ r=0 S ) I
VP T(2812) T(B12)l(Br2+1) T(ap—a—p+4)T(a+p—3)
(p =3 (L(Br2))? (T(2612+1))> [(ap+1)
VP T(ap—a—-p+4)T'(a+p—3) (19)
2(p — 3)! T'(ap+1) ’
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Similarly, for the case where i = 2 and j = 3,

1 1—wso 1— (w2+w3
Iip3 = \/ﬁ/ / /
W= 0

1—(w2+w3+ wp,g) 1—(wa4wz+... wp_1)
/ / w1h2,3(w27 wg)dwldwp,l . dw3dw2

Wp— 1_0 w1:0

1—wso 17(w2+w3)
= \f/ / ha 3( ’LU2,U)3)/
wo=0 Jws wa=0

(wetws+...wp—_2) 1—(we+ws+...wp—_1)
/ / wldwldwp_l e dwgdwg
w

p— 1=0 w1=0

= \f/wz 0/1 - (w3 + ws) P~ DO (1 _ (wy + w5))*~ 1( ['(2023) ( wy )BQ’“ (wg,)ﬁ“l

(ﬂ273))2 wa + W3 Wo + W3
1 — (’LU2 + wg)) —2

(»—2)!
1 1
= VP ) / (F(2B273> 962,3—1(1 _ 9)5213_1d9/ r(p—l)(a—1)+1(1 — r)etP=3gy
r=0

d’LU3 dw 2

(p—2)! ['(B2,3))?
_ VP T(ap—a—p+3)'(a+p—2)
(p—2)! T(ap+1) '
Putting (19) and (20) into (17) and substituting for K,(«), we obtain
_ 2(p—3) I'(ap) {(p—l) VP T(ap—a—-p+4)T'(a+p—3)
p—1)pT(ap—a—p+3)I(a+p—23) 2(p—3)! Iap+1
P\ Vb T(ap—a—-p+4)T(a+p—3)
((6)-0-1) 5% Dlap+1) ]
ap—a—p+3 a+p—3
= +
ap ap
= 1.

A.2 Deseasonalizing the river flow time series

We have two time series for this monitoring site. The first is a relatively short time series of instantaneous
flows and the second is a much longer time series which records only daily mean flows. The instantaneous
flow time series (USGS, 2007a) records the flow rate at 15 minute intervals. It covers the time period from
Oct 1, 1990 to Oct 1, 2005, and 82 days (1.5%) do not have data recorded. The second data set only records
the mean flow rate for each day (USGS, 2007b) but covers a much longer time interval (1955-2007). This
is a complete time series with no missing data, although a few (less than 0.5%) of the readings are marked
as being estimated. Both time series exhibit the same seasonal behavior. As we are interested in maximum
flow, we primarily focus on the time series of instantaneous flows, but use summary information from the
second data set to deseasonalize the measurements.

Let z¢ (mean) be the time series of observed daily mean flows, and for the time being, let the index ¢ = (y, d)
where y € {1955,...,2007} and d € {1,...,365}. We characterize the seasonal component of a particular
day d by taking the data from all years within the window [d — 6, d + 6] to calculate a sample mean m, and
variance vq. Since the time of the peak runoff can vary from year to year, using the data from all years
in the 13-day window creates smoother mean and variance functions. We then use these daily mean and
variance values to create an approximately stationary time series of weekly maxima. The daily maxima of
the instantaneous flow rate series 2z; (inst),t = (y,d) is centered and scaled: (2 q,(inst) — ™Ma)/+/Va. Missing
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values are filled in by regressing on the daily mean values (r? = .97). We then take the weekly maximum of

these values to create the deseasonalized time series of weekly maxima shown in Figure 5.
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Figure 1: Weekly maximum flow readings (ft3/sec) for the Crystal River from 10/1/1990 to
10/1,/2005.
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Figure 2: Maximum eight-hour ozone readings (ppb) for a region of North Carolina for the year
1999. X’s indicate the three stations used for the prediction study in Section 6.
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Figure 3: Three realizations from a trivariate symmetric logistic distribution. The solid curve is
the actual conditional density of the third component given the first two, and the dotted curve
is the approximated conditional density from (14). The left figure shows the realization z =
[0.56,0.63,0.41]; (||z|| = 1.60), the center shows z = [2.35,1.14,2.49]; (||z|| = 5.98), and the right
shows z = [13.17,50.04, 7.67]; (||z|| = 70.88). One can clearly see that the approximation improves
with ||z]].
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Figure 4: Results of the largest (as measured by the sum of the observed components z; + z2) 3500
of 10000 simulated trivariate logistic random variables (a = .3). Histogram shows which decile of
the approximated conditional density the hidden observation occurred. QQ plot is for the uniform-
transformed conditional density values. As the histogram is nearly flat and the qq plot follows the
45-degree line, it shows the approximated condtional density is very well represented.
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Figure 5: Deseasonalized weekly maximum flows for the Crystal River.
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Figure 6: Pairwise beta spectral measure fit to the transformed river flow time series (left) and to
the three-point spatial application (right). In both, the lower right, upper, and lower left corners
correspond to the first, second, and third components of the random vector. The left panel shows the
strong dependence between the lag-1 components, while the right shows the strongest dependence
between the 2nd and 3rd components which are the closest pair of points.
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Figure 7: Histogram and qq plot for the river flow data. Shows the results of the largest (as
measured by the sum of the observed components Z(x;) + Z(x;41)) 75 triples in the time series.
Since there are only 75 observations, there is some variation in the histogram, but the QQ plot
shows that the conditional density of the third component given the first two is being reasonably
approximated.

condf | densite
0010 0015
] ]
condf | densite
004
]
0.2 0.3 0.4

005
]
condf | densite

0.0z
1

a1

a0

0.000
1

(=1
- =2 o
T T T T T = T T T T T T T T T T
a 50 100 150 200 a 10 20 30 +0 50 a 5 10 15

(80.58, 79.95, 50.45) (450, 16.85, 28.14) (3.47,3.15, 3.93)

Figure 8: The black curve shows the approximated conditional density of the value at the third
location given the values at the other two locations of three simulated fields. The dot is the actual
value at the third location. The vector below each graph gives respectively the values at the two
observed locations and the hidden value at the third location.
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Figure 9: Histogram and qq plot for the largest 300 of 1000 fields. Histogram shows that the lowest
decile is being under-approximated, and consequently the qq plot is shifted by these excess low
values. Aside from the lowest observations, the conditional density is well-approximated.
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Figure 10: ROC plot of an exceedance over a level of 50 (solid) and 20 (dashed) for the simulated
spatial data.
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Figure 11: Shows the estimated conditional density (solid line) along with the marginal density
(dotted line) for the annual maximum value given the annual maximum value at two nearby loca-
tions. Below each plot is a vector in which the first two components are the observed measurements
used to approximate the conditional density and the third is the hidden component.
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