AUTOLOGIT.CC - AN IMPLEMENTATION OF THE AUTOLOGISTIC
MODEL WITH COVARIATES

Greg S. Young*
National Center for Atmospheric Research, Boulder, Colorado
and
Jennifer A. Hoeting
Colorado State University, Fort Collins, Colorado

The C++ program autologit produces predictions for an autologistic model
with covariates using the methodology described in Hoeting et al. (2000). An
object-oriented design methodology was adopted for implementation. A Gibbs
sampling estimation procedure is used to estimate the parameters. This software
will be made publicly available at Statlib (http://lib.stat.cmu.edu).

The file AUTOLOGIT.shar contains the following files:

e autologit.cc- main program. This program is actually called by the user
and user modifications should be limited to this program. Several subrou-
tines are called internally and are outlined in the header file autologit.h.

e param.cc - object file. This file contains the member functions for the
param class (see below). All parameter manipulations are managed by
these routines, including likelihood optimization.

e stats.cc - object file. Routines for the generation of random variates are
included here, written by Dixon (1998).

e matrix.cc - object file. All of the procedures for the needed matrix ma-
nipulations are included here.

e gridpoint.cc - object file. This file contains the the member functions
for the gridpoint class.

e Makefile - project makefile. This routine will compile the object files
and link them to the main program in the correct order, building the
executable file autologit.

In addition, a variety of header (.h) files are included, specifying the procedures
and class structures.

As currently written, autologit computes estimates for square lattices. A
second order neighborhood is used in the computation of the spatial covariate
(8). See the procedure “get_sums” in autologit.cc to change the neighborhood
structure.

1 Classes

In an object oriented design, classes include a set of data and all of the operations
that will be performed on those data in a single structure. The goal is to make
code that is simpler and easier to maintain. The following classes were designed:

* Corresponding author address: Greg Young, National Center for Atmospheric Research,
Research Applications Program, Boulder, CO 80307-3000; email: young@ucar.edu



e param - a parameter base class, containing the information necessary
for the assignment and updating of the parameter values. The classes
beta_param, thetaQ_param, and thetaj_param are derived from the class
param, and correspond to the parameters 3, 6y, and 8y, (for k =1,2,...,p)
respectively. The primary reason for the distinction was the differing
pseudolikelihoods of the parameters. There are no instances of the param
class, only the derived classes. While there can be only one instance of
beta_param and thetaQ_param, multiple objects of the thetaj_param class
are allowed to correspond to the number of covariates. The procedure used
in the optimization of the parameter pseudolikelihoods was programmed
by Keselyov (1991), based on the algorithm by Forsythe et al. (1977).

e gridpoint - a class describing the status of each grid point on the lattice.
The most significant member function updates the grid point’s probability
of presence.

e matrix - a matrix class. This class resulted from a need to perform copious
numbers of matrix manipulations. Although the class is somewhat limited
in its scope, all necessary functions are included and are straightforward
enough for easy modification.

2 Installation

A Makefile has been included for the compiling of the program and its various
object files. Simply copy all of the files into one directory, and type “make”.
The program will be complied and the executable autologit will be created.
The g++ complier is used. If any modifications are made to any of the included
programs, rebuild the code by typing “make clean” (this removes the old object
files) and “make” (to recompile the code). A debug option is also included in
the Makefile, but must be specified in a build by typing “make debug”.

3 Usage

The following sections detail how to set up the necessary files for autologit and
how to customize its features.

3.1 Reading in arrays

Much of the data used in autologit is in the form of arrays or vectors. As
described in Hoeting et al (2000) section 3, the image (z) is updated in four
independent sets. These sets must be manually coded and are then read into
the program. Also, the response vector (y) and the list of sampled sites are in
array form. h

The format for reading in these arrays is from an ASCII text file, where the
first line is the number of elements in the array, followed by the actual elements,
listed one per line. For example, the vector (1,0,1,1) would be specified as

== O D



in a file. If this vector was a reponse, it would translate into the following 2 X
2 lattice
11
01

The format for the response vector is 0 for a “no” observation or for an
unsampled site, and 1 for a “yes” observation. There must be one response for
every site in the lattice. That is, the vector must specify a 0 or a 1 for all of
the sites. The length of the vector will equal the number of sites. The vector
of sampled sites must also be equal to the number of sites in the list with a 0
representing a sampled site and a 1 representing an unsampled site. This format
may seem backward, but it aides in the updating of the sites in the sampler.

The four independent groups are identified in the following manner. Arrays
must be read in with the following file names according to their location (top,
bottom, left, right, or middle) and group number (1, 2, 3, 4): bot3, bot4, left1,
left3, right2, right4, topl, top2, midl, mid2, mid3, mid4. The non-middle arrays
have only two separate files because as edges, they will contain only two of the
four groups. The files contain on the first line the length of the array and then
the index numbers of the sites included in that group. For example, for the top
edge of group 2 the following would be the contents of the file top2 for a 6 X 6
lattice:

BN W

6.

A site can only occur in one group. For corner sites, choose one of the two
possibilities.

These groups have already been specified for a 50 X 50 lattice. Use them as
guidelines for constructing these groups for different lattices.

3.2 Reading in the covariate matrix

The covariate matrix contains one row for each site and one column for each
covariate. There cannot be any sites with missing covariates. The matrix is
described in a similar manner to the arrays. The first line of the file contains
the number of rows in the matrix followed by the number of columns. Then,
the matrix values are listed, one per line, column by column. For example, the
matrix

1

2
2

—
W Co Ot

would specified

32



3.3 Customizing

There are several customizable features in the autologit program. The file
settings.h includes three constants that need to be set by the user. The first
is SIZE which determines the size of the lattice used. Only squared lattices are
possible and SIZE determines the length and width of the lattice (in number of
sites). The second is N_.COVARS, which specifies the number of covariates that
will be considered for the model. The third is the string file_loc which gives
the directory of the files specifying the independent groups.

The remaining inputs are specified through command line arguments. When
autologit is run, the following must be specified and in this order:

e response file

e covariate file

e sites sampled file

e simulation length (in number of iterations)

e burn-in time (in number of iterations)

e 7 (the variance for the normal prior distributions of y, k =0, ..., p)

e ¢ (the first parameter in the gamma prior for § where the mean is ¥Ya
and the variance is a?)

e o (the second parameter in the gamma prior for 3)
e starting value for
e starting values for 6y, k =0, ..., p (this must be of length N.COVARS+1)

e directory for the output files.

For example, the command line
autologit inputs/y inputs/Z inputs/g 2000 500 20 1 2 1 0 0 0 .

would use the file y in the directory inputs for the response (y), the file Z in
the directory inputs for the covariate matrix, and g in the directory inputs
for the vector of sampled sites. The simulation would run for 2000 iterations,
allowing for a 500 iteration burn-in period. The variance for (§) would be 20, ¢
=1, and a = 2. The starting values would be § =1,609 =0, 6; = 0, and 6, =
0, where the constant N_.COVARS was set to 2. Finally, the output files would
be written to the directory from which the command originated (the current
directory).

3.4 Output

Three files are output from autologit. The first is autologit.avg which is the
average image or mean of the estimated posterior distribution for the probability
of presence. This file stores the vector in the same orientation as the file for the
input vector y and the vector of sampled sites. That is, the output file

.67
.35
.78
.20



.67 | .78
35 | .20

would correspond to the following 2 X 2 estimated posterior probability lattice

The second is the file track.p stores every sim/10th estimated posterior.
That is, it records 10 estimated posteriors, equally spaced over the course of
the simulation run. The setup is similar to that of autologit.avg except that
each of the 10 realizations are separate “columns” in the file (each line in the
file corresponds to a grid point with commas separating the realizations).

Lastly, the file track.param stores the parameter estimates at every itera-
tion. The estimates are listed one iteration per line, with the first entry being
the estimate for 6y, followed by the 6 (k = 1,...,p) estimates, and finally the
estimate for 3.

References

Dixon, M. 1998: Random variate generation. University Corporation for At-
mospheric Research.

Forsythe, G., M. Malcolm, and C. Moler, 1977 Computer Methods for
Mathematical Computations. Prentice-Hall Inc., Englewood Cliffs,
New Jersey.

Hoeting, J. A., M. Leecaster, and D. Bowden, (2000): An improved model for
spatially correlated binary responses. Journal of Agricultural, Biological,
and Environmental Statistics, 5, 102-114.

Keselyov, 1991: FMINBR. Obtained from Netlib repository.



