Nonparametric Survey Regression Estimation in Two-Stage Spatial Sampling

Siobhan Everson-Stewart

F. Jay Breidt
Colorado State University

Jean D. Opsomer
Ji-Yeon Kim
Iowa State University

Statistical Survey Design and Analysis for Aquatic Resources
September 21, 2002

Research supported by EPA grants
R-82909501-0 to Colorado State University and
R-82909601-0 to Oregon State University
Outline

• Use of auxiliary information in surveys
 – operational considerations
 – review of estimators

• Nonparametric regression estimator
 – general case
 – two-dimensional extension
 – construction of weights for multiple status
 estimates

• Example: Northeastern lakes survey

• Further work
Auxiliary Information

- Finite population of clusters:
 \[C = \{1, \ldots, i, \ldots, M\} \]

- Draw a sample \(s \subset C \) of size \(m \)

- For each sampled cluster, \(i \in s \), a sample, \(s_i \), is drawn from \(U_i \)

- Observe \(y_{ij} \)

- Obtain complete auxiliary information at the cluster level \(x_i, i \in C \)
 - elevation, slope, and aspect from digital elevation model
 - ecological indicators from GIS coverage
 - pixel-specific spectral values from Landsat image
Modeling Environment

- Common survey situation:
 - statistical agency collects data, auxiliary info \((x)\)
 - data set is created and released to users
 - data set reflects knowledge of design and auxiliary information, \(x\)
 - agency is responsible for estimating status of many study variables
Modeling Constraints

• Like to use x to improve estimates for y
• Limited time and other resources
• Potential controversy among end users
• Estimation strategy
 – should use information in x_i, $i \in C$
 – should handle many study variables
 – should not require modeling efforts for every study variable
 – should be efficient if model is right
 – should not fail if model is wrong
Model-Assisted Estimators

\[
\frac{1}{N} \left\{ \sum_{i \in C} \hat{\mu}_i + \sum_{i \in s} \frac{y_i - \hat{\mu}_i}{\pi_i} \right\}
\]

where

\[
\bar{y}_i = \left(\sum_{j \in s_i} \frac{Y_{ij}}{\pi_j | i} \right) \left(\sum_{j \in s_i} \frac{1}{\pi_j | i} \right)^{-1}
\]

- Model-based prediction + design bias adjustment

- Approximately design-unbiased, with small variance if model is correct.

- Horvitz-Thompson: \(\hat{\mu}_i \equiv 0 \) since no auxiliary information is used

- Generalized Regression: \(\hat{\mu}_i = x_i^\prime \hat{\beta} \)

- Local Polynomial Regression: \(\hat{\mu}_i \) comes from a kernel smooth
Local Polynomial Regression

- Nonparametric model:
 \[
 \frac{1}{N_i} \sum_{j \in U_i} y_{ij} = m(x_i) + \nu^{1/2}(x_i) \epsilon_i
 \]
- Locally weighted least squares fits (Wand and Jones, 1995)
Form of the Estimate for Two Dimensional Case

• Nonparametric Mean Estimator

\[\hat{\mu}_i = e_1'(X'_{si}W_{si}X_{si})^{-1}X'_{si}W_{si}\bar{y}_s = w'_{si}\bar{y}_s \]

• Local Design Matrix

\[X_{si} = \begin{bmatrix} 1 & x_j - x_i & y_j - y_i \end{bmatrix}_{j \in s} \]

• Local Weighting Matrix

\[W_{si} = \text{Diag} \left\{ \frac{1}{\pi_jh^2}K \left(\frac{x_j - x_i}{h} \right)K \left(\frac{y_j - y_i}{h} \right) \right\}_{j \in s} \]
Weighting

- LPR is a linear estimator; construct n weights \{\omega_{ij}\} for \(i \in s, j \in s_i\)
 - reflect design properties
 - incorporate auxiliary information
 - do not depend on a particular study variable

- For any study variable \(y\), estimate

\[
\theta_y = \frac{1}{N} \sum_{i \in C} \sum_{j \in U_i} \frac{y_{ij}}{N_i}
\]

via

\[
\hat{\theta}_y = \frac{1}{N} \sum_{i \in s} \sum_{j \in s_i} \omega_{ij} y_{ij}
\]
Ex: Northeastern Lakes

- Survey of 20,000+ lakes in 8 Northeastern states
- More than 300 individual lakes were visited between one and six times.
- Many study variables stored in 32 data sets.
- $x = \text{longitude}$ was used as the auxiliary information
- Each lake was treated as a cluster.
- Nonparametric regression estimates calculated for various chemistry variables.
Northeastern Lakes Lake Chemistry Means and Coefficients of Variation

<table>
<thead>
<tr>
<th>Chemistry Measure</th>
<th>HT</th>
<th>REG</th>
<th>LPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log K</td>
<td>2.845 (8.33)</td>
<td>2.795 (3.04)</td>
<td>2.797 (2.79)</td>
</tr>
<tr>
<td>Log SO(_4)</td>
<td>4.828 (7.37)</td>
<td>4.739 (1.75)</td>
<td>4.727 (1.69)</td>
</tr>
<tr>
<td>Log Ca</td>
<td>5.835 (7.76)</td>
<td>5.721 (1.73)</td>
<td>5.725 (1.69)</td>
</tr>
<tr>
<td>Log Cl</td>
<td>4.531 (8.63)</td>
<td>4.447 (3.67)</td>
<td>4.461 (3.43)</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>522.8 (16.20)</td>
<td>520.1 (11.75)</td>
<td>518.1 (11.58)</td>
</tr>
</tbody>
</table>

- Average mean, with coefficients of variation underneath (%)
- Standard error estimates made using with replacement approximation.
Further Work

• Variance estimation (unequal probability EMAP samples)
• Efficient computation (binning, interpolation)
• Simulation studies
• Bandwidth selection