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Preface

This book covers most topics needed to develop a broad and thorough working knowl-
edge of modern statistical computing and computational statistics. We seek to develop
a practical understanding of how and why existing methods work, enabling readers to
use modern statistical methods effectively. Since many new methods are built from
components of existing techniques, our ultimate goal is to provide scientists with the
tools they need to contribute new ideas to the field.

Achieving these goals requires familiarity with diverse topics in statistical comput-
ing, computational statistics, computer science, and numerical analysis. Our choice
of topics reflects our view of what is central to this evolving field, and what will be
interesting and useful for our readers. We pragmatically assigned priority to topics
that can be of the most benefit to students and researchers most quickly.

Some topics we omitted represent important areas of past and present research in
the field, but their priority here is lowered by the availability of high-quality software.
For example, the generation of pseudo-random numbers is a classic topic, but one
that we prefer to address by giving students reliable software. Some topics, such
as numerical linear algebra, are on the borderline. Such topics are critical for many
applications, yet good routines are generally available. In our judgment, the frequency
with which one must shelve the routines and dig into the details of numerical linear
algebra falls (barely) below the threshold we set for inclusion in this book. Among the
classic topics we have chosen to cover are optimization and numerical integration. We
include these because (i) they are cornerstones of frequentist and Bayesian inference;
(ii) routine application of available software often fails for hard problems; and (iii) the
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methods themselves are often secondary components of other statistical computing
algorithms.

Our use of the adjective modern is potentially troublesome: there is no way that this
book can cover all the latest,greatest techniques. We have not even tried. Some topics,
such as heuristic search and Markov chain Monte Carlo, simply move too quickly.
We have instead tried to offer a reasonably up-to-date survey of a broad portion of the
field, while leaving room for diversions and esoterica. Some topics (e.g., principal
curves and tabu search) are included simply because they are interesting and provide
very different perspectives on familiar problems. Perhaps a future researcher may
draw ideas from such topics to design a creative and effective new algorithm.

Our target audience includes graduate students in statistics and related fields,work-
ing statisticians, and quantitative empirical scientists in other fields. We hope such
readers may use the book when applying standard methods and developing new meth-
ods.

The level of mathematics expected of the reader does not extend much beyond
Taylor series and linear algebra. Breadth of mathematical training is more helpful
than depth. Essential review is provided in Chapter 1. More advanced readers will
find greater mathematical detail in the wide variety of high-quality books available
on specific topics, many of which are referenced in the text. Other readers caring
less about analytical details may prefer to focus on our descriptions of algorithms and
examples.

The expected level of statistics is equivalent to that obtained by a graduate student
in his or her first year of study of the theory of statistics and probability. An under-
standing of maximum likelihood methods, Bayesian methods, elementary asymptotic
theory, Markov chains, and linear models is most important. Many of these topics
are reviewed in Chapter 1.

With respect to computer programming, we find that good students can learn as
they go. However, a working knowledge of a suitable language allows implementation
of the ideas covered in this book to progress much more quickly. We have chosen to
forgo any language-specific examples, algorithms, or coding. For those wishing to
learn a language while they study this book, we recommend you choose a high-level,
interactive package that permits the flexible design of graphical displays and includes
supporting statistics and probability functions. At the time of writing, we recommend
S-Plus, R, and MATLAB.1 These are the sort of languages often used by researchers
during the development of new statistical computing techniques, and are suitable for
implementing all the methods we describe, except in some cases for problems of vast
scope or complexity. Of course, lower-level languages such as C ��� can also be used,
and are favored for professional grade implementation of algorithms after researchers
have refined the methodology.

Even adept computer programmers may have little understanding of how mathe-
matics is carried out in the binary world of a computer. Mysterious problems with

1Websites for these software packages are www.insightful.com, www.r-project.org, and
www.mathworks.com, respectively. R is free software reimplementing portions of S-Plus; the
others are commercial.
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full-rank matrices that appear noninvertible, integrals and likelihoods that vanish,
numerical approximations that appear more precise than they really are, and other
oddities are not unusual. While not dismissing the importance of computer arith-
metic and numerically stable computation, we prefer to focus on the big picture of
how algorithms work and to sweep under the rug some of the nitty-gritty numerical
computation details.

The book is organized into three major parts: optimization (Chapters 2, 3, and
4), integration (Chapters 5, 6, 7, and 8), and smoothing (Chapters 10, 11, and 12).
Chapter 9 adds another essential topic, the bootstrap. The chapters are written to stand
independently, so a course can be built by selecting the topics one wishes to teach.
For a one-semester course, our selection typically weights most heavily topics from
Chapters 2, 5, 6, 7, 9, 10, and 11. With a leisurely pace or more thorough coverage,
a shorter list of topics could still easily fill a semester course. There is sufficient
material here to provide a thorough one-year course of study, notwithstanding any
supplemental topics one might wish to teach.

A variety of homework problems are included at the end of each chapter. Some are
straightforward, while others require the student to develop a thorough understanding
of the model/method being used, to carefully (and perhaps cleverly) code a suitable
technique, and to devote considerable attention to the interpretation of results.

The datasets discussed in the text and problems are available from the book website,
www.stat.colostate.edu/computationalstatistics. The errata will also be found there.
Responsibility for all errors lies with us.

Geof H. Givens and Jennifer A. Hoeting

Fort Collins, Colorado
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