Aggregation of Rapidly varying Risks and Asymptotic independence

Abhimanyu Mitra

Department of OR & IE
Cornell University, Ithaca, NY

June 24, 2009

(Joint work with S. I. Resnick)
Outline:

1. Introduction and Preliminaries
2. Main Result
3. Examples
Consider a portfolio with two assets. The risks associated with the two assets: X and Y. Total risk of the portfolio: $X + Y$.

Quantities of interest: $\text{VaR}(X + Y)(p)$ for p close to 1, and $P(X + Y > x)$ for large x. Direct computation is difficult in most cases. Simulation strategies are not well-known in the case where the marginal distributions are subexponential (defined later).
Consider a portfolio with two assets. The risks associated with the two assets: X and Y. Total risk of the portfolio: $X + Y$.

Quantities of interest:
- VaR$_{(X+Y)} (p)$ for p close to 1, and
- $P(X + Y > x)$ for large x.

Direct computation is difficult in most cases. Simulation strategies are not well-known in the case where the marginal distributions are subexponential (defined later).
Consider a portfolio with two assets. The risks associated with the two assets: X and Y. Total risk of the portfolio: $X + Y$.

Quantities of interest:
- $\text{VaR}_{X+Y}(p)$ for p close to 1, and
- $P(X + Y > x)$ for large x.

Direct computation is difficult in most cases.
Consider a portfolio with two assets. The risks associated with the two assets: X and Y. Total risk of the portfolio: $X + Y$.

Quantities of interest:
- $\text{VaR}_{(X+Y)}(p)$ for p close to 1,
 and
- $P(X + Y > x)$ for large x.

Direct computation is difficult in most cases.

Simulation strategies are not well-known in the case where the marginal distributions are subexponential (defined later).
The usual approach towards obtaining $P(X + Y > x)$: Check if

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?$$
The usual approach towards obtaining $P(X + Y > x)$: Check if

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?$$

This approach might help in obtaining $P(X + Y > x)$ in two ways:

- The limit can be used to create a direct approximation of $P(X + Y > x)$
- To prove that some simulation algorithms for finding $P(X + Y > x)$ have nice properties like bounded relative error or logarithmic efficiency, often such a limit is used.
The usual approach towards obtaining $P(X + Y > x)$: Check if

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?$$

This approach might help in obtaining $P(X + Y > x)$ in two ways:

- The limit can be used to create a direct approximation of $P(X + Y > x)$
- To prove that some simulation algorithms for finding $P(X + Y > x)$ have nice properties like bounded relative error or logarithmic efficiency, often such a limit is used.

Start with the simplifying assumption: X and Y are identically distributed.
The usual approach towards obtaining $P(X + Y > x)$: Check if

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = Constant \in (0, \infty)?$$

This approach might help in obtaining $P(X + Y > x)$ in two ways:

- The limit can be used to create a direct approximation of $P(X + Y > x)$
- To prove that some simulation algorithms for finding $P(X + Y > x)$ have nice properties like bounded relative error or logarithmic efficiency, often such a limit is used.

Start with the simplifying assumption: X and Y are identically distributed.

Approach the problem using extreme value theory.
Suppose \((X, Y) \sim F(x, y)\).

Definition

\(F\) is in the *maximal domain of attraction* of extreme value distribution \(G\), if there exists normalizing constants \(a_n^{(i)} > 0, b_n^{(i)} \in \mathbb{R}, 1 \leq i \leq 2\), such that as \(n \to \infty\),

\[
F^n(a_n^{(1)}x^{(1)} + b_n^{(1)}, a_n^{(2)}x^{(2)} + b_n^{(2)}) \to G(x^{(1)}, x^{(2)})
\]

for limit distribution \(G\), such that each marginal \(G_i, i = 1, 2\) is non-degenerate.
Suppose \((X, Y) \sim F(x, y)\).

Definition

\(F\) is in the *maximal domain of attraction* of extreme value distribution \(G\), if there exists normalizing constants \(a_n^{(i)} > 0, b_n^{(i)} \in \mathbb{R}, 1 \leq i \leq 2\), such that as \(n \to \infty\),

\[
F^n(a_n^{(1)} x^{(1)} + b_n^{(1)}, a_n^{(2)} x^{(2)} + b_n^{(2)}) \to G(x^{(1)}, x^{(2)})
\]

for limit distribution \(G\), such that each marginal \(G_i\), \(i = 1, 2\) is non-degenerate.

Implications of the definition: If the marginals of \(F\) are \(F_i\), \(i = 1, 2\),

\[
F_i^n(a_n^{(i)} x^{(i)} + b_n^{(i)}) \to G_i(x^{(i)})
\]
Since \(X \overset{d}{=} Y \), in the present case,
\[
F_1(\cdot) = F_2(\cdot), \quad G_1(\cdot) = G_2(\cdot), \quad a_n^{(1)} = a_n^{(2)}, \quad b_n^{(1)} = b_n^{(2)}.
\]
Since $X \overset{d}{=} Y$, in the present case,

$$F_1(\cdot) = F_2(\cdot), G_1(\cdot) = G_2(\cdot), a_n^{(1)} = a_n^{(2)}, b_n^{(1)} = b_n^{(2)}.$$

From Extreme Value Theory, there are only 3 choices for $G_1(\cdot)$.
Multivariate Extremes

- Since $X \overset{d}{=} Y$, in the present case,
 \[F_1(\cdot) = F_2(\cdot), G_1(\cdot) = G_2(\cdot), a_n^{(1)} = a_n^{(2)}, b_n^{(1)} = b_n^{(2)} \].

- From Extreme Value Theory, there are only 3 choices for $G_1(\cdot)$:
 - Frechet: $G_1(x) = \begin{cases}
 \exp(-x^{-\alpha}) & x \geq 0, \\
 0 & x < 0
 \end{cases}$
 for some $\alpha > 0$.

- The last case (Weibull) $\Rightarrow F_1$ has a finite right end point, so the limit makes little sense here. Hence, the case where
 \[G_1(x) = \begin{cases}
 \exp(-x^{-\alpha}) & x < 0, \\
 0 & x \geq 0
 \end{cases} \]
 for some $\alpha > 0$, is less interesting for the present problem.
Since $X \overset{d}{=} Y$, in the present case,

\[F_1(\cdot) = F_2(\cdot), \quad G_1(\cdot) = G_2(\cdot), \quad a_n^{(1)} = a_n^{(2)}, \quad b_n^{(1)} = b_n^{(2)}. \]

From Extreme Value Theory, there are only 3 choices for $G_1(\cdot)$

- Frechet: $G_1(x) = \begin{cases} \exp(-x^{-\alpha}) & x \geq 0, \\ 0 & x < 0 \end{cases}$ for some $\alpha > 0$.
- Gumbel: $G_1(x) = \exp(-e^{-x}), \quad x \in \mathbb{R}$.
Since $X \overset{d}{=} Y$, in the present case,
\[F_1(\cdot) = F_2(\cdot), G_1(\cdot) = G_2(\cdot), a_n^{(1)} = a_n^{(2)}, b_n^{(1)} = b_n^{(2)}. \]

From Extreme Value Theory, there are only 3 choices for $G_1(\cdot)$

- **Frechet**: $G_1(x) = \begin{cases} \exp(-x\alpha) & x \geq 0, \\ 0 & x < 0 \end{cases}$ for some $\alpha > 0$.
- **Gumbel**: $G_1(x) = \exp(-e^{-x}), \ x \in \mathbb{R}$.
- **Weibull**: $G_1(x) = \begin{cases} \exp(-(x)\alpha) & x < 0, \\ 0 & x \geq 0 \end{cases}$ for some $\alpha > 0$.

The last case (Weibull) $\Rightarrow F_1$ has a finite right end point, so the limit makes little sense here. Hence, the case where $G_1(x) = \begin{cases} \exp(-x\alpha) & x \geq 0, \\ 0 & x < 0 \end{cases}$ for some $\alpha > 0,$ is less interesting for the present problem.
Since $X \overset{d}{=} Y$, in the present case,

$$F_1(\cdot) = F_2(\cdot), G_1(\cdot) = G_2(\cdot), a_n^{(1)} = a_n^{(2)}, b_n^{(1)} = b_n^{(2)}.$$

From Extreme Value Theory, there are only 3 choices for $G_1(\cdot)$

- Frechet:

 $$G_1(x) = \begin{cases}
 \exp(-x^{-\alpha}) & x \geq 0, \\
 0 & x < 0
 \end{cases}
 $$

 for some $\alpha > 0$.

- Gumbel:

 $$G_1(x) = \exp(-e^{-x}), \ x \in \mathbb{R}.$$

- Weibull:

 $$G_1(x) = \begin{cases}
 \exp(-(x)^{\alpha}) & x < 0, \\
 0 & x \geq 0
 \end{cases}
 $$

 for some $\alpha > 0$.

The last case (Weibull) $\Rightarrow F_1$ has a finite right end point, so the limit makes little sense here. Hence, the case where

$$G_1(x) = \begin{cases}
 \exp(-(x)^{\alpha}) & x < 0, \\
 0 & x \geq 0
 \end{cases}
 $$

for some $\alpha > 0$, is less interesting for the present problem.
Asymptotic independence

- Suppose, F is in the maximal domain of attraction of extreme value distribution G, i.e. there exists normalizing constants $a_n^{(i)} > 0$, $b_n^{(i)} \in \mathbb{R}, 1 \leq i \leq 2$, such that as $n \to \infty$,

$$F^n(a_n^{(1)}x^{(1)} + b_n^{(1)}, a_n^{(2)}x^{(2)} + b_n^{(2)}) \to G(x^{(1)}, x^{(2)})$$

for limit distribution G, such that each marginal $G_i, i = 1, 2$ is non-degenerate.
Asymptotic independence

- Suppose, \(F \) is in the maximal domain of attraction of extreme value distribution \(G \), i.e. there exists normalizing constants \(a_n^{(i)} > 0 \), \(b_n^{(i)} \in \mathbb{R}, 1 \leq i \leq 2 \), such that as \(n \to \infty \),

\[
F^n(a_n^{(1)} x^{(1)} + b_n^{(1)}, a_n^{(2)} x^{(2)} + b_n^{(2)}) \to G(x^{(1)}, x^{(2)})
\]

for limit distribution \(G \), such that each marginal \(G_i, i = 1, 2 \) is non-degenerate.

Definition

\(X \) and \(Y \) are said to be *asymptotically independent*, if

\[
G(x^{(1)}, x^{(2)}) = G_1(x^{(1)})G_2(x^{(2)})
\]
Asymptotic independence

- Suppose, F is in the maximal domain of attraction of extreme value distribution G, i.e. there exists normalizing constants $a_n^{(i)} > 0$, $b_n^{(i)} \in \mathbb{R}, 1 \leq i \leq 2$, such that as $n \to \infty$,

$$F^n(a_n^{(1)} x^{(1)} + b_n^{(1)}, a_n^{(2)} x^{(2)} + b_n^{(2)}) \to G(x^{(1)}, x^{(2)})$$

for limit distribution G, such that each marginal $G_i, i = 1, 2$ is non-degenerate.

Definition

X and Y are said to be *asymptotically independent*, if

$$G(x^{(1)}, x^{(2)}) = G_1(x^{(1)})G_2(x^{(2)})$$

- In general, *asymptotic independence* is present in many models used in practice.
Back to our original question: When is

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = Constant \in (0, \infty)?$$
Existing Results

- Back to our original question: When is
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = Constant \in (0, \infty)\?
 \]

- In the Frechet case, i.e., for some \(\alpha > 0 \),
 \[
 G_1(x) = \begin{cases}
 \exp(-x^{-\alpha}) & x \geq 0, \\
 0 & x < 0
 \end{cases}
 \]
 the answer to the question is well known both in presence and in absence of asymptotic independence.
Back to our original question: When is

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?$$

In the *Frechet* case, i.e., for some $\alpha > 0$,

$$G_1(x) = \begin{cases}
\exp(-x^{-\alpha}) & x \geq 0, \\
0 & x < 0
\end{cases}$$

the answer to the question is well known both in *presence* and in *absence* of asymptotic independence.

In the *Gumbel* case, i.e. $G_1(x) = \exp(-e^{-x}), x \in \mathbb{R}$, in *absence* of asymptotic independence, the question is recently answered by Klüppelberg and Resnick (2008).
Back to our original question: When is

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?$$

In the Frechet case, i.e., for some $\alpha > 0$,

$$G_1(x) = \begin{cases} \exp(-x^{-\alpha}) & x \geq 0, \\ 0 & x < 0 \end{cases}$$

the answer to the question is well known both in presence and in absence of asymptotic independence.

In the Gumbel case, i.e. $G_1(x) = \exp(-e^{-x})$, $x \in \mathbb{R}$, in absence of asymptotic independence, the question is recently answered by Klüppelberg and Resnick (2008).

Remaining case: When $X \overset{d}{=} Y \in MDA(\Lambda)$, where $\Lambda(\cdot)$ is the Gumbel distribution and X and Y are asymptotically independent. Denote by \mathcal{C} the class of 2 dimensional distributions of (X, Y) for which $X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y)$.
One special case: Independent X and Y

- The class of distribution functions C_1, for which $X \overset{d}{=} Y \in MDA(\Lambda)$ and X and Y are independent, is a subclass of C.

A distribution F on \mathbb{R}^+ is subexponential if
\[
\lim_{x \to \infty} \frac{1 - F^2(x)}{1 - F(x)} = 2.
\]
Let us denote the class of subexponential distributions by S.
One special case: Independent X and Y

- The class of distribution functions C_1, for which $X \overset{d}{=} Y \in MDA(\Lambda)$ and X and Y are independent, is a subclass of C.
 - If the distribution of (X, Y) belongs to C_1, when is
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?
 \]

Answering the above question led to new definitions of classes of distribution functions. Most celebrated among these classes is the class of subexponential distributions.

Definition: A distribution F on \mathbb{R}_+ is subexponential if
\[
\lim_{x \to \infty} \frac{1 - F^{*2}(x)}{1 - F(x)} = 2.
\]

Let us denote the class of subexponential distributions by S.
One special case: Independent X and Y

- The class of distribution functions C_1, for which $X \overset{d}{=} Y \in MDA(\Lambda)$ and X and Y are independent, is a subclass of C.
 - If the distribution of (X, Y) belongs to C_1, when is
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty) ?
 \]
 - Answering the above question led to new definitions of classes of distribution functions.
One special case: Independent \(X \) and \(Y \)

- The class of distribution functions \(C_1 \), for which \(X \overset{d}{=} Y \in MDA(\Lambda) \) and \(X \) and \(Y \) are independent, is a subclass of \(\mathcal{C} \).
 - If the distribution of \((X, Y)\) belongs to \(C_1 \), when is
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?
 \]

- Answering the above question led to new definitions of classes of distribution functions.
- Most celebrated among these classes: **Subexponential**.
One special case: Independent X and Y

- The class of distribution functions C_1, for which $X \overset{d}{=} Y \in \text{MDA}(\Lambda)$ and X and Y are independent, is a subclass of C.
 - If the distribution of (X, Y) belongs to C_1, when is
 $$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \text{Constant} \in (0, \infty)?$$
 - Answering the above question led to new definitions of classes of distribution functions.
 - Most celebrated among these classes: Subexponential.

Definition

A distribution F on \mathbb{R}_+ is subexponential if

$$\lim_{x \to \infty} \frac{1 - F^*(x)}{1 - F(x)} = 2.$$

- Let us denote the class of subexponential distributions by S.
There are 2 distinct behaviors observed within the class \mathcal{C} $(X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y))$:

- First, suppose (X, Y) are two iid risks with common distribution F and $F \in MDA(\Lambda) \cap S$. Then X and Y are certainly asymptotically independent and

\[
\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.
\]

- Very different tail behavior is observed by Albrecher, Asmussen and Kortschak (2006), who exhibit a distribution of (X, Y), with X and Y being identically distributed and asymptotically independent with common distribution $F \in MDA(\Lambda) \cap S$, but

\[
\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \infty.
\]

So, subexponentiality of X and Y is not sufficient to ensure a limit in $(0, \infty)$ when (X, Y) has a distribution belonging to \mathcal{C}.
There are 2 distinct behaviors observed within the class C

$(X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y))$:

- First, suppose (X, Y) are two iid risks with common distribution F and
 $F \in MDA(\Lambda) \cap S$. Then X and Y are certainly asymptotically
 independent and

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.$$
Back to the general case: Problems

- There are 2 distinct behaviors observed within the class \(C\) \(\overset{d}{=} Y, (X, Y) \in MDA(G)\) where \(G(x, y) = \Lambda(x)\Lambda(y)\) :
 - First, suppose \((X, Y)\) are two iid risks with common distribution \(F\) and \(F \in MDA(\Lambda) \cap S\). Then \(X\) and \(Y\) are certainly asymptotically independent and
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.
 \]
 - Very different tail behavior is observed by Albrecher, Asmussen and Kortschak (2006), who exhibit a distribution of \((X, Y)\), with \(X\) and \(Y\) being identically distributed and asymptotically independent with common distribution \(F \in MDA(\Lambda) \cap S\), but
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \infty.
 \]
Back to the general case: Problems

- There are 2 distinct behaviors observed within the class \mathcal{C}

 $(X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y))$

 - First, suppose (X, Y) are two iid risks with common distribution F and $F \in MDA(\Lambda) \cap S$. Then X and Y are certainly asymptotically independent and
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.
 \]

 - Very different tail behavior is observed by Albrecher, Asmussen and Kortschak (2006), who exhibit a distribution of (X, Y), with X and Y being identically distributed and asymptotically independent with common distribution $F \in MDA(\Lambda) \cap S$, but
 \[
 \lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = \infty.
 \]

- So, subexponentiality of X and Y is \textit{not} sufficient to ensure a limit in $(0, \infty)$ when (X, Y) has a distribution belonging to \mathcal{C}.

What assumptions would ensure the limit $= 2$?

- We provide sufficient conditions under which the limit is 2.
What assumptions would ensure the limit \(= 2 \)?

- We provide sufficient conditions under which the limit is 2.
- To state the conditions, first define the auxiliary function \(f \) of \(F \). For a distribution \(F \in MDA(\Lambda) \), there exists an absolutely continuous function \(f \) with its derivative going to 0, such that

\[
\lim_{t \to \infty} \frac{\bar{F}(t + xf(t))}{\bar{F}(t)} = e^{-x}.
\]

(1)

Such a function \(f \) is called the auxiliary function of \(F \) (de Haan (1970)). In common cases \(f \) is the reciprocal of the hazard function

\[
f = \frac{1 - F}{F'}.
\]
Assumptions

- We need 3 assumptions:

 1. For all \(z > 0 \), \(\lim_{x \to \infty} P(|Y| > zf(t) | X > t) = 0 \) (2)
 2. For all \(z > 0 \), \(\lim_{x \to \infty} P(|X| > zf(t) | Y > t) = 0 \) (3)
 3. For some \(L > 0 \), \(\lim_{x \to \infty} P(Y > Lf(t), X > Lf(t)) = 0 \). (4)
Assumptions

- We need 3 assumptions:
 - For all $z > 0$,
 \[
 \lim_{x \to \infty} P(|Y| > zf(t)|X > t) = 0
 \] (2)
Assumptions

- We need 3 assumptions:
 - For all $z > 0$,
 \[
 \lim_{x \to \infty} P(|Y| > zf(t)|X > t) = 0 \tag{2}
 \]
 - For all $z > 0$,
 \[
 \lim_{x \to \infty} P(|X| > zf(t)|Y > t) = 0 \tag{3}
 \]
Assumptions

- We need 3 assumptions:
 - For all $z > 0$,
 \[\lim_{x \to \infty} P(|Y| > zf(t)|X > t) = 0 \]
 - For all $z > 0$,
 \[\lim_{x \to \infty} P(|X| > zf(t)|Y > t) = 0 \]
 - For some $L > 0$,
 \[\lim_{x \to \infty} \frac{P(Y > Lf(t), X > Lf(t))}{P(X > t)} = 0. \]
Assumptions

- We need 3 assumptions:
 - For all $z > 0$,
 \[\lim_{x \to \infty} P(|Y| > zf(t)|X > t) = 0 \quad (2) \]
 - For all $z > 0$,
 \[\lim_{x \to \infty} P(|X| > zf(t)|Y > t) = 0 \quad (3) \]
 - For some $L > 0$,
 \[\lim_{x \to \infty} \frac{P(Y > Lf(t), X > Lf(t))}{P(X > t)} = 0. \quad (4) \]

Theorem

Suppose, $X \overset{d}{=} Y \sim F \in MDA(\Lambda)$ and $x_0 = \sup\{x : F(x) < 1\} = \infty$. If (2), (3) and (4) hold, then

\[\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2. \]
Find rich classes of distributions which satisfy the assumptions.
Examples

Find rich classes of distributions which satisfy the assumptions.

First model: \((X_1, X_2) \sim N(\mu, \Sigma)\), where \(\rho = \text{Correlation}(X_1, X_2) < 1\). Then, \((X, Y) = (\exp(X_1), \exp(X_2))\) satisfies all our assumptions.

Second Model: Suppose, \(X_i \overset{iid}{\sim} F, i = 1, 2, 3\), where for some \(\alpha > 1\),
\[
\bar{F}(x) = \begin{cases}
\exp\{-\left(\log x\right)^\alpha\} & \text{if } x > 1 \\
1 & \text{if } x \leq 1
\end{cases}
\]
Then, \((X, Y) = (X_1 \wedge X_2, X_2 \wedge X_3)\) satisfies all our assumptions.

Third Model: Suppose, \(F \in \text{MDA}(\Lambda)\), concentrated on \([0, \infty)\), such that \(x_0 = \sup\{x : F(x) < 1\} = \infty\), \(x_1 = \inf\{x : F(x) > 0\} = 0\), \(\lim_{x \to \infty} f(x) > 0\). Recall, \(f(x)\) is the auxiliary function as defined in (1). Examples of such \(F\): Exponential, Gamma, Lognormal etc.
Then, \((X, Y) = (F \leftarrow (U), F \leftarrow (1 - U))\), where \(U \sim \text{Uniform}(0, 1)\), satisfies all our assumptions.

The third model shows that subexponentiality of \(X\) and \(Y\) is not a necessary condition to ensure a limit in \((0, \infty)\).
Find rich classes of distributions which satisfy the assumptions.

First model: \((X_1, X_2) \sim \mathcal{N}(\mu, \Sigma)\), where \(\rho = \text{Correlation}(X_1, X_2) < 1\). Then, \((X, Y) = (\exp(X_1), \exp(X_2))\) satisfies all our assumptions.

Second Model: Suppose, \(X_i \overset{iid}{\sim} F, i = 1, 2, 3\), where for some \(\alpha > 1\),

\[
\bar{F}(x) = \begin{cases}
\exp\{-\left(\log x\right)^\alpha\}, & \text{if } x > 1, \\
1, & \text{if } x \leq 1.
\end{cases}
\]

Then, \((X, Y) = (X_1 \wedge X_2, X_2 \wedge X_3)\) satisfies all our assumptions.
Find rich classes of distributions which satisfy the assumptions.

First model: \((X_1, X_2) \sim \mathcal{N}(\mu, \Sigma)\), where \(\rho = \text{Correlation}(X_1, X_2) < 1\).
Then, \((X, Y) = (\exp(X_1), \exp(X_2))\) satisfies all our assumptions.

Second Model: Suppose, \(X_i \overset{iid}{\sim} F, i = 1, 2, 3\), where for some \(\alpha > 1\),
\[
\bar{F}(x) = \begin{cases}
\exp\{-(\log x)^\alpha\}, & \text{if } x > 1, \\
1, & \text{if } x \leq 1.
\end{cases}
\]
Then, \((X, Y) = (X_1 \wedge X_2, X_2 \wedge X_3)\) satisfies all our assumptions.

Third Model: Suppose, \(F \in \text{MDA}(\Lambda)\), concentrated on \([0, \infty)\), such that
\(x_0 = \sup\{x : F(x) < 1\} = \infty, x_1 = \inf\{x : F(x) > 0\} = 0,\)
\(\liminf_{x\to\infty} f(x) > 0.\)
Recall, \(f(x)\) is the auxiliary function as defined in (1).
Examples of such \(F\): Exponential, Gamma, Lognormal etc.
Then, \((X, Y) = (F^\leftarrow(U), F^\leftarrow(1 - U))\), where \(U \sim \text{Uniform}(0, 1)\), satisfies all our assumptions.
Examples

- Find rich classes of distributions which satisfy the assumptions.
 - First model: \((X_1, X_2) \sim \mathcal{N}(\mu, \Sigma)\), where \(\rho = \text{Correlation}(X_1, X_2) < 1\).
 Then, \((X, Y) = (\exp(X_1), \exp(X_2))\) satisfies all our assumptions.
 - Second Model: Suppose, \(X_i \overset{iid}{\sim} F, i = 1, 2, 3\), where for some \(\alpha > 1\),
 \[
 \bar{F}(x) = \begin{cases}
 \exp\{-(\log x)^\alpha\}, & \text{if } x > 1, \\
 1, & \text{if } x \leq 1.
 \end{cases}
 \]
 Then, \((X, Y) = (X_1 \wedge X_2, X_2 \wedge X_3)\) satisfies all our assumptions.
 - Third Model: Suppose, \(F \in \text{MDA}(\Lambda)\), concentrated on \([0, \infty)\), such that
 \(x_0 = \sup\{x: F(x) < 1\} = \infty, x_1 = \inf\{x: F(x) > 0\} = 0, \lim \inf_{x \to \infty} f(x) > 0\).
 Recall, \(f(x)\) is the auxiliary function as defined in (1).
 Examples of such \(F\): Exponential, Gamma, Lognormal etc.
 Then, \((X, Y) = (F^-((U), F^-((1 - U)))\), where \(U \sim \text{Uniform}(0, 1)\), satisfies all our assumptions.

- The third model shows that subexponentiality of \(X\) and \(Y\) is not a necessary condition to ensure a limit in \((0, \infty)\).
We have provided sufficient conditions under which

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.$$
We have provided sufficient conditions under which

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.$$

The assumption (2) implies asymptotic independence, hence the class of distributions satisfying the assumptions of the theorem forms a subclass of the class of distributions C we considered first ($X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y)$).
We have provided sufficient conditions under which
\[
\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.
\]

The assumption (2) implies *asymptotic independence*, hence the class of distributions satisfying the assumptions of the theorem forms a subclass of the class of distributions \(C\) we considered first
\[
(X \overset{d}{=} Y, (X, Y) \in MDA(G) \text{ where } G(x, y) = \Lambda(x)\Lambda(y)).
\]

The assumption \(X \overset{d}{=} Y \in MDA(\Lambda)\) implies that both \(X\) and \(Y\) are rapidly varying, i.e. for all \(t > 1\),
\[
\lim_{x \to \infty} \frac{P(X > tx)}{P(X > x)} = \lim_{x \to \infty} \frac{P(Y > tx)}{P(Y > x)} = 0.
\]
We have provided sufficient conditions under which

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.$$

The assumption (2) implies asymptotic independence, hence the class of distributions satisfying the assumptions of the theorem forms a subclass of the class of distributions C we considered first ($X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y)$).

The assumption $X \overset{d}{=} Y \in MDA(\Lambda)$ implies that both X and Y are rapidly varying, i.e. for all $t > 1$,

$$\lim_{x \to \infty} \frac{P(X > tx)}{P(X > x)} = \lim_{x \to \infty} \frac{P(Y > tx)}{P(Y > x)} = 0.$$

The conditions are only sufficient. Necessary and sufficient conditions?
We have provided sufficient conditions under which

$$\lim_{x \to \infty} \frac{P(X + Y > x)}{P(X > x)} = 2.$$

The assumption (2) implies asymptotic independence, hence the class of distributions satisfying the assumptions of the theorem forms a subclass of the class of distributions C we considered first $(X \overset{d}{=} Y, (X, Y) \in MDA(G)$ where $G(x, y) = \Lambda(x)\Lambda(y))$.

The assumption $X \overset{d}{=} Y \in MDA(\Lambda)$ implies that both X and Y are rapidly varying, i.e. for all $t > 1$,

$$\lim_{x \to \infty} \frac{P(X > tx)}{P(X > x)} = \lim_{x \to \infty} \frac{P(Y > tx)}{P(Y > x)} = 0.$$

The conditions are only sufficient. Necessary and sufficient conditions?

The result is extended to the case where X and Y are not identically distributed, i.e. where $X \sim F, Y \sim G$ and $\lim_{x \to \infty} \frac{\bar{G}(x)}{F(x)} = c \in [0, \infty)$.
Thank You !