

REGRESSION ANALYSIS

Concepts and Applications

With SAS or Minitab
Lab Manual

Franklin A. Graybill Hariharan K. Iyer

Assumptions (A) for Multiple Linear Regression

Notation The $(k + 1)$ -variable population $\{(Y, X_1, \dots, X_k)\}$ is the study population.

(Population) Assumption 1 The mean $\mu_Y(x_1, \dots, x_k)$ of the subpopulation of Y values with $X_1 = x_1, \dots, X_k = x_k$ is

$$\mu_Y(x_1, \dots, x_k) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

where $\beta_0, \beta_1, \dots, \beta_k$ are unknown parameters and x_1, \dots, x_k belong to the set of allowable values (sometimes called the *domain*) of the predictor variables.

(Population) Assumption 2 The standard deviation of the Y values in the subpopulations with $X_1 = x_1, \dots, X_k = x_k$ does not depend on the values x_1, \dots, x_k (i.e., the standard deviations are the same for each subpopulation determined by specified values of the predictor variables X_1, \dots, X_k). This common standard deviation of all the subpopulations is denoted by $\sigma_{Y|X_1, \dots, X_k}$. When there is no possibility of confusion, we use the simpler notation σ instead of the more complete notation $\sigma_{Y|X_1, \dots, X_k}$.

(Population) Assumption 3 Each subpopulation of Y values, determined by specified values of X_1, \dots, X_k is a Gaussian population.

(Sample) Assumption 4 The sample data are obtained by simple random sampling or by sampling with preselected values of X_1, \dots, X_k , discussed in Section 2.3. The number of items in the sample is n .

(Sample) Assumption 5 All sample values $y_i, x_{i1}, \dots, x_{ik}$ for $i = 1, \dots, n$ are observed without error (but read Section 3.10).

Assumptions (B) for Multiple Linear Regression

(Population) Assumption 1 The study population $\{(Y, X_1, \dots, X_k)\}$ is a $(k + 1)$ -variable Gaussian population.

(Sample) Assumption 2 The sample data are obtained by simple random sampling described in Section 2.3; i.e., a simple random sample of n items is selected from the population and the values of the variables Y, X_1, \dots, X_k are observed.

(Sample) Assumption 3 The sample values $y_i, x_{i1}, \dots, x_{ik}$ for $i = 1, \dots, n$ are measured without error.

Simple Random Sampling

Sample data are obtained by selecting a simple random sample of n items from the entire population of N items and recording the values for the response variable Y and the predictor variables X_1, \dots, X_k , for each item in the sample. Refer to Section 1.6.

Random Sampling with Preselected X values

Specific values of the predictor variables X_1, \dots, X_k are preselected by the investigator, and each of these preselected sets of values determines a subpopulation of Y values. A simple random sample of one or more Y values is selected from each of these subpopulations. The number of observations to be sampled from each subpopulation is also predetermined by the investigator.

*Regression Analysis:
Concepts and Applications*