A Nonparametric Statistical Comparison of Principal Component and Linear Discriminant Subspaces for Face Recognition *

J. Ross Beveridge, Kai She and Bruce Draper
Computer Science Department
Colorado State University
Fort Collins, CO, 80523

Geof H. Givens
Statistics Department
Colorado State University
Fort Collins, CO, 80523

Abstract

The FERET evaluation compared recognition rates for different semi-automated and automated face recognition algorithms. We extend FERET by considering when differences in recognition rates are statistically distinguishable subject to changes in test imagery. Nearest Neighbor classifiers using principal component and linear discriminant subspaces are compared using different choices of distance metric. Probability distributions for recognition rate and pairwise differences in recognition rates are determined using a permutation methodology. The principal component subspace with Mahalanobis distance is the best combination; using L2 is second best. Choice of distance measure for the linear discriminant subspace matters little, and performance is always worse than the principal components classifier using either Mahalanobis or L1 distance. We make the source code for the algorithms, scoring procedures and permutation study available in the hopes others will extend this comparison to newer algorithms.

1. Introduction

The FERET evaluation [12] established a common data set and a common testing protocol for evaluating semi-automated and automated face recognition algorithms. It illustrated how much can be accomplished in a well coordinated comparative evaluation. That said, the FERET evaluation stopped short of addressing the critical question of statistical variability. In short, which of the measured differences in algorithm performance were statistically distinguishable, and which essentially matters of chance.

Answering this question is not a simple matter, for it begs other questions such as what is the larger population under consideration and what are the intrinsic sources of uncertainty in the testing procedure. In their broad form, these question go far beyond the scope of any single paper, including this one. Here we will consider whether the observed difference in percentage of people correctly recognized using different algorithms exceeds what might be expected by chance alone, if the target population is limited to the sample.

Seven algorithm variants are considered. Four are nearest neighbor classifiers using a subspace defined by principal components derived from training imagery. Three use the principal components to reduce image dimensionality and then perform nearest neighbor classification in a further subspace defined by linear discriminants. The linear discriminants are derived from class labeled training imagery. The four principal component analysis (PCA) algorithms use L1, L2, angle and Mahalanobis distance respectively in the nearest neighbor phase. The three linear discriminant analysis (LDA) algorithms use L1, L2 and angle distance respectively. The percentage of people recognized, or recognition rate, is used to compare algorithm performance. Recognition rate may be parameterized at different ranks, where rank 1 means the nearest neighbor is an image of the same person, and rank k means an image of the same person is among the top k nearest neighbors.

A permutation sampling procedure is used to estimate the recognition rate distribution for each algorithm under the assumption that each person's gallery images are exchangeable, as are each person's probe images. Keeping with common FERET terminology, gallery images are exemplars of the people already known to the system and probe images are novel images to be recognized. The testing data used in this study consists of 4 images for each of 256 distinct individuals. Initially, we endeavored to design a bootstrapping [6] study, but difficulties described below led us to instead favor a permutation method. The permutation method generates samples that always contain one instance of each person, and it is the choice of gallery and probe images for each individual that is permuted.

We write this paper for two reasons. First, while neither of the algorithms being tested are by any means state-of-the-art, they are both fundamental and well known. Each represents, in a pure form, the expression of a mature branch of pattern classification. Second, there is nothing in the per-

*This work supported by the Defense Advanced Research Projects Agency under contract DABT63-00-1-0007.
mutation methodology that is particular to the algorithms studied here. Our algorithms, scoring and statistical evaluation code are available through our web site and we hope others will use them to establish baselines against which to assess the performance of new algorithms.

1.1. Previous Work

The FERET evaluation [12] provided a large set of human face data and established a well defined protocol for comparing algorithms and the data is now available to research labs working on face recognition problems [8]. The primary tool used to compare algorithm performance in FERET was the Cumulative Match Score (CMS) curve. Recognition rate for different algorithms is plotted as a function of rank k. Curves higher in the plot represent algorithms doing better. This same comparison techniques is used in the more recent Facial Recognition Vendor Test 2000 [3].

The FERET evaluation did not establish a common means of testing when the difference between two curves was significant. At the end of the FERET evaluation, a large probe set was partitioned into a series of smaller probe sets, and algorithms were ranked based upon performance on each partition. Variation in these rankings suggested how robust an algorithm’s position in the ranking was relative to changes in test data ([12] Tables 4 and 5). This represents a first attempt to address the issue of variation associated with changes in the test data.

As a baseline algorithm, FERET used an Eigenface algorithm that represented the line of classification algorithms based upon PCA that arose from the work by [11, 10]. The PCA algorithm used here is for all intents and purposes equivalent to the Eigenface algorithm used in FERET. One of the top performing algorithms in the FERET evaluation was an LDA algorithm developed by Zhao and Chellapa [17]. Of the top performing algorithms in FERET, this is the one based upon the oldest and best understood subspace projection technique after PCA [5, 1]. For both these reasons, a similar LDA algorithm has been chosen for our study.

Stepping back from face recognition, characterizing the performance of computer vision algorithms has been an ongoing concern [7, 9] and more is certainly being done in this area each year. In comparison, however, far more is written each year about new and different algorithms. See [14, 15] for recent surveys of face recognition algorithms. Thus, while the literature on algorithms is vast, little has been written about using modern statistical methods [4] to measure uncertainty in performance measures.

One notable exception is the work by Micheals and Boul [13]. Micheals and Boul use a statistical technique to derive mean and standard deviation estimates for recognition rates at different ranks. They compare a standard PCA algorithm to two algorithms from the Visonics’ FaceIt SDK.

2. Recognition Algorithms

2.1. PCA Algorithm

While the standard PCA algorithm is well known, we include a brief description in order to be completely clear as to how our particular variant is constructed. The PCA subspace is defined by a scatter matrix formed by training images. A set of m training images T may be viewed as a set of column vectors containing the images expressed as vectors containing n pixel values $v_{x,y}$:

$$T = \{x_1, x_2, \ldots, x_M\} \quad x_i = [v_{1, i}, \ldots, v_{r, c}]^T$$

Equivalently, the m images may now be viewed as points in \mathbb{R}^n. The centroid of the training images x_μ is subtracted from each image when forming the n by m data matrix X.

$$X = \{x_1 - x_\mu, \ldots, x_p - x_\mu\} \quad x_\mu = \frac{1}{P} \sum_{i=1}^P x_i$$

The scatter matrix Ω is now defined to be

$$\Omega = XX^T$$

When properly normalized, Ω is a sample covariance matrix. The Principal Components are the eigenvectors of Ω. Thus

$$\Omega E = \Lambda E$$

defines the PCA basis vectors, E, and the associated eigenvalues Λ. It is common to sort E by order of decreasing eigenvalue and to then truncate E, including only the most significant principal components. The result is an n by d orthogonal projection matrix E_d.

The PCA recognition algorithm is a nearest neighbor classifier operating in the PCA subspace. The projection y' of an image y in PCA subspace is defined as

$$y' = E_d (y - x_\mu)$$
During training, E_d and x_μ are constructed and saved. During testing, exemplar images of the people to be recognized are projected into the PCA subspace. A novel image is recognized by first being projected into PCA subspace and then compared to exemplar images already stored in the subspace.

2.2. Distance Measures

Four commonly used distance measures are tested here: L1, L2, angle and Mahalanobis distance, where angle and Mahalanobis distance are defined as:

Angle Negative Angle Between Image Vectors

$$
\delta(x, y) = -\frac{x \cdot y}{||x|| ||y||} = -\frac{\sum_{i=1}^{k} x_i y_i}{\sqrt{\sum_{i=1}^{k} (x_i)^2} \sqrt{\sum_{i=1}^{k} (y_i)^2}}
$$

(6)

Mahalanobis Mahalanobis Distance

$$
\delta(x, y) = -\sum_{i=1}^{k} \frac{1}{\lambda_i} x_i y_i
$$

(7)

Where λ_i is the ith Eigenvalue corresponding to the ith Eigenvector.

2.3. PCA plus LDA Algorithm

The LDA algorithm uses the PCA subspace projection as a first step in processing the image data. Thus, the Fisher Linear Discriminants are defined in the d dimensional subspace defined by the first d principal components. This design choice is consistent with prior uses of LDA algorithms to perform face recognition [17].

Fisher's method defines $c-1$ basis vectors where c is the number of classes. These basis vectors may be expressed as rows in a matrix W, and the discriminants are defined as those basis vectors that maximize the ratio of distances between classes divided by distances within each class:

$$
J(W) = \frac{W M_B W^T}{W M_W W^T}
$$

(8)

where

$$
M_W = \sum_{i=1}^{c} M_i, \quad M_i = \sum_{j=1}^{n_i} (y_j - \mu_i) (y_j - \mu_i)^T
$$

(9)

and

$$
M_B = \sum_{i=1}^{c} n_i (\mu_i - \mu) (\mu_i - \mu)^T
$$

(10)

The basis vectors are the row vectors in W that maximize $J(W)$. Text books often state that W is found by solving the general eigenvector problem [5]:

$$
M_B W = \lambda M_W W
$$

(11)

This is true, but provides no insight into why. Nor is it always the best way to solve for W [18]. We have written a report [2] illustrating the underlying geometry at work and filling out the solution method used in [18].

Projecting an image y into LDA subspace yields y':

$$
y' = W y' = W E_d (y - x_\mu)
$$

(12)

Training images must be partitioned into classes, one class per person. They are used to determine E_p, x_μ and W. During testing, the LDA algorithm performs classification in LDA space in exactly the same manner that the PCA algorithm performs classification in the PCA subspace.

3. Research Question

The complete FERET database includes 14,051 source images, but only 3,819 have the subject facing directly into the camera. Of these, there are 1,201 distinct individuals represented. For 481 of these people, there are 3 or more images, and for 256 there are 4 or more images. Being more precise, for these 256 individuals there are two pairs of images, where the first pair was taken on a single day, and the second pair on a different day. Of the images taken on the same day, the subject was instructed to pick one facial expression for the first image and another for the second.

We will use the 481 people and corresponding 1,699 images as the basis for our study. The question of interest is:

How much variation in recognition rate can be expected when comparing gallery images of these individuals taken on one day to probe images taken on another day?

While clearly this is not the only question we might pose, it is interesting and sufficient to illustrate our method.

4. Preprocessing and Training

Both algorithms considered here are semi-automated in that they require the face data be spatially normalized. In addition, both algorithms required training. Both procedures are explained below.

1 It might surprise some readers to note that no further instruction was given. Specifically the subjects were not coached as to what sort of expression to adopt, for example smile of frown, happy or sad. So, it is incorrect to assume anything other than that the expressions are different.
4.1. Image Preprocessing

All our FERET imagery has been preprocessed using code originally developed at NIST and used in the FERET evaluations. We have taken this code and converted it to straight C, instead of C++, and we have separated it from the large set of NIST libraries that come with the FERET data distribution. Thus, it is one source file that compiles by itself and is available through our web site.

Spatial normalization rotates, translates and scales the images so that the eyes are placed at fixed points in the imagery based upon a ground truth file of eye coordinates supplied with the FERET data. The images are cropped to a standard size, 150 by 130. The NIST code also masks out pixels not lying within an oval shaped face region and scales the pixel data range of each image within the face region. In the source imagery, grey level values are integers in the range 0 to 255. These pixel values are first histogram equalization and then shifted and scaled such that the mean value of all pixels in the face region is zero and the standard deviation is one.

4.2. Algorithm Training

For the tests presented here, we choose to focus on issues relating solely to changes in the test data and not to consider the broader question of uncertainty introduced by changes in training data. This is to not suggest that variation due to training is unimportant. However, the permutation method used here must sample from the space of experiments thousands of times, and were such sampling done by brute force retraining on each sample, the computational burden would be staggering. In the past we have studied variation in both PCA and LDA performance subject to retraining [16]. In future we will investigate ways to adapt our methodology efficiently to questions involving changes to the training data.

Since it is desirable to have no overlap between training and test data, and since the data with 4 images per person is highly valuable for testing, it was decided to use the imagery of the 225 people for whom there are at least 3, but not 4, images each for training. Consequently, the PCA algorithm was trained using 675 images. In keeping with common practice in the FERET evaluation, the top 40 percent of the eigenvectors were retained. The LDA algorithm was trained on the same images partitioned into 225 classes, one class per person.

It is possible now to place actual numbers on the transformations used by the subspace algorithms. The projection from image space to PCA space maps from \(\mathbb{R}^{10600} \) to \(\mathbb{R}^{270} \); 270 is 40 percent of 675. The projection from PCA space to LDA space is a projection from \(\mathbb{R}^{270} \), to \(\mathbb{R}^{224} \).

There are relatively few other choices to make in setting up these two algorithms. One is the distance metric, and we consider several common alternatives. Another is how many eigenvectors to retain, and the decision was made to stick with a nominal value. Finally, for the LDA algorithm the nature of the training data is critical. While the decision to use the 675 images, 3 images per person, is the obvious one given our data constraints, it is far from ideal. On the order of 10 or 100 images per person would be a much better number for training. Also, it is an open question whether having so many people, 225, and thus such a high dimensional LDA subspace, is good. Past LDA work has used fewer individuals, and some have used a synthetic alteration processes to boost the training images per class [17].

5. Data Setup and Recognition Rate

<table>
<thead>
<tr>
<th>Person</th>
<th>Day 1 Expression</th>
<th>Day 2 Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One</td>
<td>Another</td>
</tr>
<tr>
<td>0</td>
<td>(l_{0,0})</td>
<td>(l_{0,1})</td>
</tr>
<tr>
<td>1</td>
<td>(l_{1,0})</td>
<td>(l_{1,1})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>255</td>
<td>(l_{255,0})</td>
<td>(l_{255,1})</td>
</tr>
</tbody>
</table>

Table 1: Illustrating the organization of the 1,024 test images organized by person, day and facial expression.

The recognition algorithms are tested using a set of Probe Images, denoted \(G \), and a set of Gallery Images, denoted \(P \). The probe and gallery images in our tests are drawn from the 256 people for whom there are 4 or more images. The resulting 1,024 test images are partitioned as illustrated in Table 1.

The distance between two images does not vary once the choice of distance metric is fixed. So it is not necessary to run each algorithm on each choice of probe and gallery images. Instead, distance between all pairs of test images are computed once and stored a distance matrix:

\[
\delta(l_{i,j}, l_{k,l})
\]

To compute a recognition rate, for each probe image \(p \in P \), sort \(G \) by increasing distance \(\delta \) from \(p \), yielding a list of gallery images \(L_p \). Let \(L_p(k) \) contain the first \(k \) images in this sorted list. An indicator function \(r_k(p) \) returns 1 if \(p \) is recognized at rank \(k \), and zero otherwise:

\[
r_k(p) = \begin{cases} 1 & \text{if } i = l, \text{ for } p = l_{i,j}, l_{i,m} \in L_p(k) \\ 0 & \text{otherwise} \end{cases}
\]

Recognition rate for probe set \(P \) is denoted \(R_k(P) \), where

\[
R_k(P) = \frac{\sum_{p \in P} r_k(p)}{n} \quad \text{where } n = |P|
\]

In English, \(R_k(P) \) is the fraction of probe images with a gallery image of the same person among the \(k \) nearest neighbors.
6. Bootstrapping, Replicates and Rank

An obvious way to perform bootstrapping on the image data presented in Table 1 is to begin by sampling from the population of 256 people with replacement. Sampling with replacement is a critical component of bootstrapping in order to properly infer generalization to a larger population of people [4]. Indeed, we went down this road a few steps before encountering the following difficulty.

When sampling with replacement, some individuals will appear multiple times and these duplicates cause a problem for the scoring methodology. To see this clearly, it is necessary to go one level deeper into the sampling methodology. Once an individual is selected, it still remains to select a pair of images to use for testing: one as the gallery image and one as the probe image.

For the sake of illustration, assume individual 0 is duplicated 4 times. Also assume for the moment that the gallery image is selected at random from columns 0 and 1 and the probe image from columns 2 and 3. Thus, one possible selection might be:

\[
\{ (I_{0,0}, I_{0,2}) , (I_{0,1}, I_{0,2}) , (I_{0,0}, I_{0,3}) , (I_{0,1}, I_{0,3}) \}
\]

where the pairs are ordered, gallery image then probe image. The intent of bootstrapping is that when a given pair is selected, for example \((I_{0,0}, I_{0,3})\), then the recognition score should pertain specifically to that pairing. However, it could easily happen that probe image \(I_{0,3}\) is close to gallery image \(I_{0,1}\) but not to \(I_{0,0}\). So, strict adherence to the bootstrapping requirements dictates a near match to \(I_{0,1}\) should be ignored, and the algorithm should be scored based upon whether or not \(I_{0,0}\) is in the set of \(k\) nearest gallery images. Clearly this is not how our scoring was defined above. Making this change alters the measure we are attempting to characterize, so is not an option. However, if the match between \(I_{0,3}\) and \(I_{0,1}\) is counted, as would happen with normal application of the recognition rate defined above, the bootstrapping assumptions are violated.

It is not immediately obvious how to preserve the recognition rate scoring protocol and simultaneously satisfy the needs of bootstrapping. The matter is certainly not closed and we are continuing to consider alternatives. However, for the moment this problem represents a significant obstacle to the successful application of bootstrapping and we therefore turn our energies to a permutation based approach that does not require sampling with replacement.

7. Permuting Probe-Gallery Choices

As with many nonparametric techniques, the idea of our permutation approach is to generate a sampling distribution for the statistic of interest by repeatedly computing this statistic from different datasets that are somehow equivalent. In our approach, the key assumption is that the gallery images for any individual are exchangeable, as are the probe images. If this is true, then, for example, \((I_{0,0}, I_{0,2})\) is exchangeable with \((I_{0,1}, I_{0,2})\), \((I_{0,0}, I_{0,3})\), or \((I_{0,1}, I_{0,3})\). The statistic of interest is the recognition rate \(R_k\) and the samples are obtained by permuting the choice of gallery and probe images among the exchangeable options for each of the 256 people. This might be done by going down the list of people selecting at random a gallery image from one day and a probe image from the other as illustrated in Table 2a.

This is an unbalanced sample: not all columns are equally represented. A balanced sampling is easily obtained by first permuting the personal identifiers and then using a fixed pattern of samples for the columns, as illustrated in Table 2b. This guarantees equal sampling from all columns. Our experiments below use balanced sampling.

Table 2: Illustrating unbalanced, (a), and balanced, (b), sampling. These sampling strategies permute the choices of gallery and probe images. In both tables, the first column is the integer indicating a person, the second column is the gallery image and the third column the probe image.

<table>
<thead>
<tr>
<th>Id.</th>
<th>G</th>
<th>P</th>
<th>Id.</th>
<th>G</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I_{0,0}</td>
<td>I_{0,1}</td>
<td>154</td>
<td>I_{154,0}</td>
<td>I_{154,2}</td>
</tr>
<tr>
<td>1</td>
<td>I_{1,1}</td>
<td>I_{1,3}</td>
<td>230</td>
<td>I_{230,0}</td>
<td>I_{230,3}</td>
</tr>
<tr>
<td>2</td>
<td>I_{2,2}</td>
<td>I_{2,0}</td>
<td>179</td>
<td>I_{179,1}</td>
<td>I_{179,2}</td>
</tr>
<tr>
<td>3</td>
<td>I_{3,3}</td>
<td>I_{3,3}</td>
<td>80</td>
<td>I_{80,1}</td>
<td>I_{80,3}</td>
</tr>
<tr>
<td>4</td>
<td>I_{4,4}</td>
<td>I_{4,0}</td>
<td>128</td>
<td>I_{128,2}</td>
<td>I_{128,0}</td>
</tr>
<tr>
<td>5</td>
<td>I_{5,5}</td>
<td>I_{5,2}</td>
<td>72</td>
<td>I_{72,2}</td>
<td>I_{72,1}</td>
</tr>
<tr>
<td>6</td>
<td>I_{6,6}</td>
<td>I_{6,1}</td>
<td>82</td>
<td>I_{82,3}</td>
<td>I_{82,0}</td>
</tr>
<tr>
<td>7</td>
<td>I_{7,7}</td>
<td>I_{7,3}</td>
<td>183</td>
<td>I_{183,3}</td>
<td>I_{183,1}</td>
</tr>
<tr>
<td>255</td>
<td>I_{255,2}</td>
<td>I_{255,1}</td>
<td>108</td>
<td>I_{108,3}</td>
<td>I_{108,1}</td>
</tr>
</tbody>
</table>

(a) (b)

7.1. Distributions and Confidence Intervals

The seven algorithm variants were run on all 1,024 test images. For each algorithm, the distance matrix \(d(x,y)\) for all pairs of images is saved. Then the balanced sampling described above was used to simulate 10,000 experiments where different combinations of probe and gallery images were selected. For each of these 10,000 trials, the recognition rate \(R_k\) for \(k = 1, \ldots, 10\) were recorded.

The distribution of these recognition rates represents a good approximation to the probability distribution for the larger population of possible probe and gallery images.

2 We expect that in practice the difference between balanced and non-balanced sampling will make little or no practical difference, but we have not had time yet to adequately test this presumption. This will be tested in the final version of the paper.

3We expect that in practice the difference between balanced and non-balanced sampling will make little or no practical difference, but we have not had time yet to adequately test this presumption. This will be tested in the final version of the paper.
Figure 1: Rank 0 PCA recognition rate distribution.

Figure 2: Rank 0 LDA recognition rate distribution.

Figures 1 and 2 show these distributions for the PCA and LDA algorithm variants at rank 1. To explain the recognition rate labels along the x axis, there are only 256 images in the probe sets. This means not all recognition rates are possible, but instead recognition rate runs from 0 to 1 in increments of 1/256. To avoid the problem of unequal allocation of samples to histogram bins, histogram bins are 4/256 units wide. When histogrammed in this fashion, the distributions are relatively smooth and, to a first order, unimodal.

Looking at the PCA algorithm variants, there is a clear ranking: Mahalanobis distance, followed by L1 distance, followed by the remaining two. We will take up shortly the question of how to further refine the question of relative performance between these variants. Looking at the LDA algorithm variants, two things stand out. First, there is very little difference between them. Second, they are all clustering around recognition rates comparable to the PCA algorithm using L2 or angle, and worse than PCA using L1 or Mahalanobis distance.

The simplest approach to obtaining one- and two-sided confidence intervals is the percentile method. For example, a centered 95% confidence interval is determined by coming in from both ends until the accumulated probability exceeds 0.025 on each side. This is best done on the most finally sampled version of the histogram: one with bin width equal to 1/256.

Figure 3 and 4 shows the 95% confidence intervals for PCA and LDA algorithms.

Figure 3: The 95% confidence intervals for PCA variants.

Figure 4: The 95% confidence intervals for LDA variants.
<table>
<thead>
<tr>
<th>Alg. A</th>
<th>Alg. B</th>
<th>$P(D_1(A, B) < 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mah.</td>
<td>L1</td>
<td>0.0041</td>
</tr>
<tr>
<td>L1</td>
<td>L2</td>
<td>0.0016</td>
</tr>
<tr>
<td>L2</td>
<td>Angle</td>
<td>0.6487</td>
</tr>
</tbody>
</table>

Table 3: Probability of H_0 at rank 1 given observed D_1.

Both the distributions and confidence intervals call attention to the differences between PCA using Mahalanobis distance, L1 and the other distance measures. In particular, the confidence intervals overlap, although only barely, for the case of Mahalanobis versus L2 or angle. This suggests the question of whether the difference is significant warrants further examination, as will be done in the next section.

7.2. Hypothesis Testing

The question typically asked is: Does algorithm A perform better than algorithm B? This gives rise to a one sided test of the following form. Formally, the hypothesis being tested and associated null hypothesis are:

H_1: The recognition rate R_k for algorithm A is higher than for algorithm B.

H_0: The recognition rates are identical for both algorithms.

To establish the probability of H_0 a new statistic $D_k(A, B)$ is introduced that measures the signed difference in recognition rates:

$$D_k(A, B) = R_k(A) - R_k(B)$$ \hspace{1cm} (16)

The same permutation method used above to find the distribution for R_k may be used to find the distribution for $D_k(A, B)$. Figure 5 shows these distributions for the PCA algorithm using three pairs of distance measures: Mahalanobis minus L1, L1 minus L2 and L2 minus angle. For the first two differences, the separation of the recognition rate distributions in Figure 1 suggests the difference may be significant.

Figure 5 accentuates this conclusion. The third comparison, L2 to angle, is included to illustrate how D_k behaves for algorithms that are not substantially different. Table 3 shows the probabilities for the observed differences given H_0. With very high confidence, H_0 may be rejected in favor of H_1 for the first two comparisons, and not for the third.

At first glance it might appear wise to carry out all 42 possible pairwise tests using D_k. However, doing so invites false associations. The common practice of rejecting H_0 at probability level 0.05 implies that it is very likely that one will mistakenly reject H_0 a few times. Multiple comparison procedures could be employed to remedy this problem, but a full analysis of variance [4] would provide a richer model for inference. In future work we plan to pair the analysis of variance model with the permutation inferential paradigm to provide a complete analysis of such experimental data. In lieu of such a procedure, looking at individual performance measures and making a small set of salient pairwise tests is a reasonable strategy.

8. Summary and Conclusions

Semi-automated face recognition algorithms using PCA and LDA subspaces have been compared over a large subset of the frontal FERET face images. Each subspace variant has been tested using several common distance metrics. A nonparametric permutation method has been used to estimate probability distributions for recognition rates and differences in recognition rates relative to different choices of gallery and probe images.

Somewhat surprisingly given the strength of the LDA algorithm relative to the PCA algorithm in the FERET evaluations [17], on our tests the LDA algorithm performs uniformly worse than PCA using Mahalanobis distance. Further work is required to ascertain why this difference is being seen, but one likely explanation concerns the difference in training procedures. Zhao trained using synthetically altered imagery to boost the training samples per class, a process not repeated here.

We have introduced a permutation approach for establishing confidence intervals on a common performance metric that is in spirit very similar to the approach of Micheals and Boult while avoiding their algebra and their reliance on variance estimates and normal approximations. Future work will explore linkages between these approaches, and more sophisticated analysis methods for the data produced by these experiments and the permutation of their results.
References

