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BioConductor

• “Bioconductor is an open source and open 
development software project for the analysis 
and comprehension of genomic data.” 
(www.bioconductor.org)

• BioConductor is based on the R programming 
language.

• Features of BioConductor:
– New methods quickly incorporated
– Flexibility of R programming
– Help and documentation (help, vignettes, mail list)
– Free!
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Installing R and BioConductor

• To install R go to: www.r-project.org
Choose a CRAN Mirror
Download R2.1.1 
(Available for Linux, Mac or Windows)

• To install BioConductor, open R and type:

source("http://www.bioconductor.org/biocLite.R")
biocLite()

For more information go to:
http://www.bioconductor.org/download
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Workshop Objectives

• Demonstrate BioConductor packages 
available for Affymetrix arrays

• Provide an introduction to R/BioConductor
• Demonstrate an approach to sample size 

determination
• Availability of AEP bioinformatics 

consulting service
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Overview

1. Introduction: Estrogen Case Study
2. Data Visualization and Exploratory Analysis

- BioConductor Demonstration 1
3. Data Preprocessing and Summarization
4. Identification of Differentially Expressed Genes

- BioConductor Demonstration 2
4. Following up on Differentially Expressed Genes

- BioConductor Demonstration 3
6. Simulation Framework for Sample Size Determination
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1. Introduction: Estrogen Case Study

• During this workshop we will use publicly 
available data from a set of eight Affymetrix 
chips from an experiment designed to measure 
changes in gene expression in a breast-cancer 
cell line due to the presence (or absence) of 
estrogen and due to a time effect (10 hours or 
48 hours).  
Scholtens et al (2004) “Analyzing factorial 
designed microarray experiments”, Journal of 
Multivariate Analysis 90, 19-43.  
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• The data is described in detail in the “Estrogen 2x2 
Factorial Design” BioConductor vignette by Denise 
Scholtens and Robert Gentleman: 
“The investigators in this experiment were interested in 
the effect of estrogen on the genes in ER+ breast cancer 
cells over time.  After serum starvation of all eight 
samples, they exposed four samples to estrogen, and 
then measured mRNA transcript abundance after 10 
hours for two samples and 48 hours for the other two.  
They left the remaining four samples untreated, and 
measured mRNA transcript abundance at 10 hours for 
two samples, and 48 hours for the other two.”

• mRNA samples were obtained under each of the 4 
experimental conditions, reverse transcribed to cDNA, 
fluorescently labeled, fragmented to cRNA and 
hybridized to Affymetrix Gene Chip arrays. 

• Genes of interest are represented on the arrays using 
probe sets.
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Affymetrix GeneChip® Array

Image courtesy of Affymetrix.
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• A scanner is used to create an image of the array.

• The intensity of each “spot” indicates how much binding 
has occurred at that spot.

• A CEL file contains processed intensity values for each 
spot (after combining pixel level information).

Image courtesy of Affymetrix. 10

Image of a hybridized Affymetrix GeneChip

Image courtesy of Affymetrix.
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• A CEL file is a quantitative summary of the scanned 
image.

• For each “spot” location the mean and standard 
deviation of the pixel level information is given.

• For the HG_U95A arrays used in the estrogen 
experiment, there are a total of 640x640=409,600 spots 
on the array.

X Y MEAN STDV NPIXELS
0 0 107 86.9 25
1 0 7627.5 781.8 20
2 0 135 30.8 25
3 0 7459 1628.2 25
4 0 50 11 20
5 0 97 41.2 25
6 0 7103 1711.4 25
7 0 95.5 14.8 16
8 0 6829 1114.2 20 12

CEL and CDF files

• CEL files are considered “raw” data.
• To do anything with the CEL file, the CDF (Chip 

Description File) is also needed.
• The CDF specifies the probe and probe set to 

which each cell (or spot) belongs.
• CDF information is provided by BioConductor 

CDF packages which are available for most 
Affymetrix chip types.

• In most cases, after reading in the CEL files, 
BioConductor will load the appropriate CDF 
package (or go to the web to find it).
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Gene expression       Spot Intensity

• Genes express themselves by producing mRNA.

• The more active a gene is the more mRNA it will 
produce.

• mRNA is used to make proteins which are 
responsible for cell function.

• The intensity of a spot is indicative of how much 
labeled transcript has bound to that spot.

• Brighter spots indicate higher transcript 
abundance and therefore more active genes.
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Central Dogma of Molecular Biology

Image courtesy of Access Excellence @ the National Health Museum

Proteins are responsible for cell 
function.

DNA contains genetic information.

mRNA carries information from 
DNA and serve as templates that 
order different proteins. 
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Probe Level Information

• Short sequences of DNA (called 
oligonucleotides or oligos) represent each gene.

• Each probe is a 25 base sequence.
• A probe set is a group of probes that 

corresponds to a particular gene or EST 
(expressed sequence tag).

• Most genes or ESTs are represented by a single 
probe set, but some are represented by more 
than one probe set.
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Perfect Match (PM) and MisMatch (MM) 
probes

• A probe pair consists of a 
- PM (perfect match) probe which exactly represents part 
of the DNA sequence for a gene or EST.
- MM (mismatch) probe which differs from the PM probe 
only at the middle base (A↔T, C↔G).  

• Intensity readings from PM probes represent gene 
specific binding (GSB) plus some binding due to cross 
hybridization (nonspecific binding).

• Intensity readings from MM probes can be used to 
account for nonspecific binding (NSB).

• For the estrogen experiment, 12625 probe sets (typically 
with 16 probe pairs) are present on each HG_U95A 
array.  
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Probes and Sequences

• Each PM probe exactly 
matches part of the reference 
sequence.

• On the array, the MM probe 
is located directly below its 
corresponding PM probe.

• A probe set is a group of PM 
and MM probes corresponding 
to a gene or EST.

PM6
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MM1
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MM2
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2.  Data Visualization and Exploratory 
Analysis

• Analysis starts with CEL files as the raw data.

• Before we attempt to identify “differentially 
expressed genes” we need to check data 
quality.

• As an example, we will look at a group of 
Affymetrix HGU95A GeneChips labeled A-F.

• This data is available from the jsmHyperdip
BioConductor package and is used here for 
illustration purposes only.

19Array B has an artifact.

CEL file Images
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Residual Images using affyPLM

• affyPLM fits a probe set level linear model.

• By (graphically) examining the residuals, 
affyPLM offers another way to look for array 
artifacts.

• The residual images are colored so that large 
positive residuals are red, large negative 
residuals are blue and small residuals are white.
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Residual Images

Now we see artifacts on both arrays. 
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Boxplots of log2 PM probe intensities

The histogram for Array B has a distinctly different shape.

Histograms and Box plots of the probe intensities by Array.
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MA plots

• M values are log fold changes. 
M=log2(T/C)=log2(T)-log2(C), 
where T represents a value from a treatment 
array and C represents a value from a control 
array.

• A values are average log intensities between 
two arrays.
A=(log2(T)+log2(C))/2

• Since we assume the majority of genes will not 
be differentially expressed, we would like the 
observations to scatter around M=0. 

• After normalization, this should be the case.

24

MA plots
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Demonstration 1

• We will run some exploratory analyses on the 
estrogen data:
- CEL file images

- Residual images
- Histograms and box plots
- MA plots

- PM/MM correlation
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Experimental Design for the Estrogen 
Experiment

Time Absent Present
10 hours low10-1.cel high10-1.cel

low10-2.cel high10-2.cel
48 hours low48-1.cel high48-1.cel

low48-2.cel high48-2.cel

Estrogen

This information is summarized in the file 
EstrogenPData.txt.
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3. Preprocessing and Summarization

• A background correction is usually 
performed to adjust for optical noise 
(intensity not related to hybridization). 

• Sometimes a nonspecific binding (NSB) 
correction is performed as part of the 
background correction.

• “Normalization” is used to correct for 
systematic array differences.

• Probe set summaries are calculated.
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Popular Methods
• Affymetrix Microarray Suite (MAS) 5.0 or Gene Chip 

Operating System (GCOS) 1.0
• Model Based Expression Index (MBEI) implemented 

through dChip (www.dchip.org)
Li and Wong (2001) Model-based analysis of 
oligonucleotide arrays: expression index computation 
and outlier detection. PNAS 98, 31-36.

• Robust Multichip Analysis (RMA)
Irizarry et al. (2003) Exploration, Normalization and 
Summaries of High Density Oligonucleotide Array Probe 
Level Data, Biostatistics 4, 249-264.

• GCRMA
Wu et al (2004) A Model-Based Background Adjustment 
for Oligonucleotide Expression Arrays, JASA 99, 909-
917. 
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MAS 5.0
Background correction:

)IM(PMlogE ijij2ij −= fixed probe set, array i and probe j,

where IM (Ideal Mismatch) is chosen so IM<PM.

Normalization:
Scale so that the trimmed mean of the Eij values is the 
same for each chip.

Probe set summary:
)E,...,ght(ETukeyBiwei)(Slog imi1i2 =

The Tukey biweight algorithm is a method to determine 
a robust average unaffected by outliers.
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dChip/MBEI

iθ
ijjii εϕθν ++=)PM(N ij

Background correction:

ijijij MMPME −= for fixed ps, array i and probe j.Can use

For the PM only model, optical noise correction is 
performed on PM values.

Invariant Set Normalization:

A normalization curve is fit to a group of PM probes 
which are thought to be unchanged.

Probe set summary (MBEI):
Fit 

Probe Set Summary =

or 
ijjiNN εϕθ +=−= )MM()PM()N(E ijijij
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RMA
NOTE: RMA uses PM values only in all steps of analysis!

ijijij BPME −=
Background correction:

for fixed probe set, array i and probe j,

where B is estimated so B<PM.

Quantiles Normalization:
Forces distribution of PM values to be the same for 
every array in an experiment.

Probe set summary (RMA):
iji εαµ +jij2 +=)N(ElogRobustly fit 

Probe Set Summary = µi
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GCRMA
Background correction:

Quantiles Normalization

Probe set summary (RMA)

Wu et al. note that “RMA does not adjust well for 
nonspecific binding.”
They incorporate probe sequence to better estimate 
NSB.
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Background Corrected PM values versus 
Observed PM values
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Boxplots of Observed and Normalized Data

35

MA plots of Observed and Normalized Data
Raw Values Constant Normalization

Invariant Set Normalization Quantiles Normalization
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Comparison of Methods

• What is the “best” method?  How do the methods 
perform?

• If we have data where the truth is known, we can 
compare the performance of the methods.

• The “Golden Spike” data has 
- 1331 probe sets “spiked-in” at known fold changes 
between 1.2 and 4,
- 2535 probsets spiked in with known fold change of 1,
- 10144 empty probe sets.
Choe et al. (2005) Preferred analysis methods for 
Affymetrix GeneChips revealed by a wholly defined 
control dataset, Genome Biology 6:R16

• Used drosgenome1 Affymetrix GeneChips.
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Boxplots of Estimated FC by Method
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Power and FDR

• Power is defined as the probability that a test will declare 
a gene to be differentially expressed when in fact this is 
true.

• To estimate power, we consider the proportion of genes 
that were declared differentially expressed, when the 
true FC is less than 2 or greater than 2.

• False discovery rate (FDR) is estimated as the 
proportion of genes incorrectly declared to be 
differentially expressed.

• The p-values were corrected (for multiple comparisons) 
using the Benjamini-Hochberg (1995) method and a p-
value cut off of 0.05 was used.

• The moderated t-statistic was used to test for differential 
expression.
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Observed Power and FDR by Method

We see that the FDR is much higher than expected!

However, if we consider the 100 probe sets with the 
smallest (adjusted) p-values, we find that:

72% are truly differentially expressed for MAS,

96% are truly differentially expressed for RMA,

90% are truly differentially expressed for gcRMA,

85% are truly differentially expressed for MBEI.

MAS RMA GCRMA MBEI
FDR 0.69 0.79 0.69 0.79
Power (FC<2) 0.23 0.46 0.39 0.51
Power (FC≥2) 0.79 0.89 0.90 0.90
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MAS Present/Absent Calls

• MAS uses PM and MM information to test 
whether a probe set is present (signal greater 
than background).

• For the “Golden Spike” data, we know which 
probe sets are empty.

• We can check the accuracy of the MAS 
Present/Absent Calls (as implemented in BioC):
~88% of nonempty probe sets were called 
“Present”.
~92% of empty probe sets were called “Absent”.
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4. Identification of Differentially 
Expressed Genes

• Testing for differential expression starts with probe set 
summary values (expression values).

Control Arrays Treatment Arrays

genes

• To test for differential expression we consider:
H0: µC=µT (not differentially expressed)

versus  Ha: µC≠µT (differentially expressed)

We perform a test for every gene!
42

Test Statistics

• t-statistic: 
g

g
g SE

M
t =

• Moderated t statistic: *
*

g
SE

M
t g

g =

SEg is the standard error for gene g.

Genes with small sample variance are more likely 
to be called differentially expressed.

Where SE* is calculated after the sample 
variance is “shrunk” towards some common 
value.

)(log)(log)/(log)(log 2222 gggggg CTCTFCM −===
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Shrinkage of standard deviations

0s

*

1
s *

2s

1s 2s
ns

*

n
s…

…

gM

*

g
t

gt

The data decide whether      should be closer to        or     .

The moderated t-statistic reduces the impact of large and 
small sample standard deviations.

*

g
t gM

g
t

44

Why use the Moderated t-statistic?

• According to research by Smyth, the moderated t-
statistic has lower FDR and higher power than 
competing methods (ordinary t-statistic, Efron’s empirical 
Bayes method).
Smyth (2004) “Linear models and empirical Bayes
methods for assessing differential expression in 
microarray experiments” Statistical Applications in 
Genetics and Molecular Biology 3(1), article 3.

• Flexibility to handle contrasts.
• Easy to implement in Bioconductor!
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Linear Models
• Fit a linear model for each gene g:

where X is the design matrix, Yg is the vector of 
expression values and      represents the estimated 
coefficients, estimated by    .

• Linear models allows us to combine information across 
arrays.  They can handle arbitrarily complicated 
experiments.

• REQUIRED:
Design Matrix specifies the experimental design.
Contrast Matrix specifies which comparisons are of 
interest.

gg Xβ)E(Y =

gβ

gβ̂
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Contrasts
• A contrast is a combination of population means of the 

form

where the coefficients ai have sum zero.
• The corresponding sample contrast is

• The standard error of c is

• To test the null hypothesis
use the t statistic

.∑=Ψ iia µ

.∑= ii xac

.
2

∑=
i

i
pc n

a
sSE

0:0 =ΨH

.
cSE

c
t =
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Contrasts Matrix

• Contrasts are linear combinations of parameters 
from the linear model fit.

where       is a vector of contrasts for gene g, C
is the contrasts matrix, and       is a vector of 
coefficients from a linear model fit.

• The columns of C correspond to contrasts.

• The rows of C correspond to treatments.

gα̂
gβ̂

g
T

g C βα ˆˆ =
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Design Matrix for the Estrogen Data

• For the estrogen data, we have 8 arrays and 4 
treatments (Abs10, Pres10, Abs48, Pres48).

• The Design Matrix:

arrays

treatments

Abs10 Pres10 Abs48 Pres48
1 0 0 0 Abs10.1
1 0 0 0 Abs10.2
0 1 0 0 Pres10.1
0 1 0 0 Pres10.2
0 0 1 0 Abs48.1
0 0 1 0 Abs48.2
0 0 0 1 Pres48.1
0 0 0 1 Pres48.2

X=
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Contrasts Matrix for the Estrogen Data

• For the estrogen experiment, there are three 
comparisons of interest:

- c1: Pres10 versus Abs10 (estrogen effect at 10 hours)
- c2: Pres48 versus Abs48 (estrogen effect at 48 hours)
- c3: Abs48 versus Abs10 (time effect without estrogen)

C1 C2 C3
-1 0 -1 Abs10
1 0 0 Pres10
0 -1 1 Abs48
0 1 0 Pres48

C=

contrasts

treatments
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Multiple Testing Adjustment

• Suppose we have an array representing 10,000 genes of 
which 2% are differentially expressed.  We choose 
α=0.05.  With 100% power, we would find:
- 200 (truly) differentially expressed genes
- 490 false positives

• False discovery rate (FDR) = 490/(200+490) = 0.71
• The Benjamini Hochberg multiple testing adjustment 

attempts to control the FDR.
• Other multiple testing adjustments are available.
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The limma Package

• The limma package allows us to use linear 
models to analyze designed microarray 
experiments.

• Design matrix and contrasts matrix are required.
• limma uses empirical Bayes (moderated t) 

method.
• Multiple testing adjustments can also be done 

using limma.
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A Note about Ranking

• “In many gene discovery experiments for which 
microarrays are used, the primary aim is to rank 
the genes  in order of evidence against H0 rather 
than assign absolute p-values.  This is because 
only a limited number of genes may be followed 
up for further study regardless of the number 
which are significant” Smyth(2004)

• Ranking is easier than testing!
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Demonstration 2

• Preprocess the data according to the RMA 
algorithm and examine the box plots and MA 
plots.

• Calculate probe set summaries using RMA.

• Identify differentially expressed genes for 
various contrasts using moderated t-statistic 
(eBayes).

• Export a table of log fold changes and p-values.
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5. Following up on Differentially Expressed 
Genes

So, we have a list of differentially expressed 
genes….what do we do now?

• Annotation 

• Gene Ontology
• Venn Diagrams
• Clustering

• Diagnostics
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Annotation

• Annotation Information is available for many 
Affymetrix Chip types from BioConductor: 
www.bioconductor.org/data/metaData.html

• Information includes
– Probe set ID 
– Gene symbol/name
– UniGene ID
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Gene Ontology

“The Gene Ontology, or GO, is composed of 
three related ontologies covering basic areas of 
biological research: the molecular function of 
gene products, their role in multi-step biological 
processes, and their physical structure as 
cellular components. Each ontology is 
constructed as a directed acyclic graph.”

http://en.wikipedia.org/wiki/Gene_ontology
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The Ontologies
• F: “Molecular function describes activities, such 

as catalytic or binding activities, at the molecular 
level.”

• P: “A biological process is series of events 
accomplished by one or more ordered 
assemblies of molecular functions.” 

• C: “A cellular component is just that, a 
component of a cell but with the proviso that it is 
part of some larger object.”
http://www.geneontology.org/GO.doc.shtml#onto
logies
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An Example of GO Results for TFF1
TFF1_HUMAN

Full Name: None 
Type: protein 
Synonyms: IPI00022283 
Datasource: UniProt (The Universal Protein Resource)

Associated to Terms:

Evidence Codes:

NAS: Non-traceable Author Statement

NR: Not Recorded

TAS: Traceable Author Statement

Term Ontology Evidence Reference
carbohydrate metabolism P TAS PMID:2303034
defense response P NR UniProt:P04155
digestion P NAS PMID:9043862
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Probe Level Diagnostics
• For a given probe set, each probe can be used to 

estimate the fold change.  

• Using only probe i, we can get four estimates of fold 
change: si,3/si,1 , si,3/si,2, si,4/si,1 , si,4/si,2.

• Obviously these are NOT independent estimates, but by 
looking at a plot of the pairwise probe level data, we may 
be able to spot an outlier probe.

EstAbs10.1 EstAbs10.2 EstPres10.1 EstPres10.2
probe 1 s1,1 s1,2 s1,3 s1,4

probe 2 s2,1 s2,2 s2,3 s2,4

….
probe 16 s16,1 s16,2 s16,3 s16,4
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Plot of Probe Values

For each probe, we get 
four pairs of coordinates 
(PMAbs10.i,PMPres10.j).

The black line indicates 
the estimated log2FC.  
This is estimated as the 
median of the pairwise
probe level log2FC.

The red line indicates 
log2FC=0, for reference.
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Clustering

• The goal of clustering is to group observations 
that are “similar” based on some criteria.

• Clustering can be applied to rows (genes) and/or 
columns (arrays) of an expression data matrix.

• Clustering allows for reordering of the 
rows/columns of an expression matrix for easier 
visualization.

• Clustering is basically an exploratory tool.
• Many clustering methods available in 

Bioconductor.
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Some Clustering Methods
• Hierarchical Clustering: Let each gene be represented 

by a vector of expression values of length N, where N is 
the number of arrays.  Compute a distance matrix that 
gives the distances between all pairs (using a distance 
or similarity measure).  Group the two closest genes and 
define a new node.  Continue the process…

• K-means Clustering: User chooses the number of 
clusters and through an iterative process, each gene is 
assigned to one of the clusters.

• Self-Organizing Maps: Similar to K-means clustering, but 
the clusters are arranged in a two-dimensional grid. The 
grid size is specified by the user.
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Demonstration 3

• Annotation
• Gene Ontology
• Probe Level Diagnostic Plot
• Venn Diagrams
• Clustering
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6.  Simulation Framework for Sample Size 
Determination

• SimArray is a program for determining sample 
size by simulation.

• Required input includes at least one “starter” 
array, estimated fold changes and variance 
components.

• From this initial input, SimArray simulates 
microarray data for a requested number of 
replicates from which the power and FDR can be 
estimated.
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SimArray Algorithm

• We start with a model that incorporates the MAS, 
RMA/GCRMA and MBEI models.

• Fold changes and variance components can be 
estimated if there is more than one starter array.

• Starter arrays are background corrected and normalized.
• Choose a “true” baseline array from one of the “starter” 

arrays.  Create a “true” experimental array by multiplying 
the “true” baseline arrays by the assumed fold changes.

• Generate replicates by imposing error using estimated 
variance components.

• Analyze the simulated data.
• Estimate power and FDR.
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Example: Breast Cancer Data

• Dr. Henry Thompson is interested in comparing 
expression profiles for mice with breast cancer with and 
without a preventative treatment.

• A pilot study was conducted. Breast cancer was induced 
in all mice.  For each mouse, samples were taken from 
the tumor and the non-cancerous mammary gland (MG).

• The following pooled samples were obtained and each 
was represented on a single Affymetrix RAE230A array:
- untreated tumor
- untreated MG
- treated tumor
- treated MG

• Here we will compare treated tumor versus treated MG.
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• A regression model can be fit to each probe set:
for probe set i, probe j.

where     is an estimate of fold change.
• We can also test whether     = 1.
• When comparing treated tumor versus treated 

MG, we found that 9% of genes were 
differentially expressed.

• Variance components were also estimated from 
the (preprocessed) starter arrays.

• Data was simulated for 5, 9 and 11 replicates per 
treatment.

• Simulated data was analyzed using RMA and 
GCRMA.

ijijMGiijT ePMbPM += ..

ib̂

ib
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RMA Power
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GCRMA Power
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Comparison of Methods with 5 Replicates
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Estimated FDR

Method replicates mean(FDR) sd(FDR)
MBEI 5 0.079 0.010
gcRMA 5 0.040 0.021

9 0.163 0.080
11 0.231 0.095

RMA 5 0.055 0.007
9 0.158 0.009
11 0.213 0.010
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Discussion of Results
• The power plots shows that substantial gains are 

made when the number of replicates is 
increased from 5 to 9.  Only modest gains are 
achieved when the number of replicates is 
increased from 9 to 11.

• For this data set, RMA appears to have higher 
power than either GCRMA or MBEI.

• The estimated FDR increases with number of 
replicates.  This may be due to the fact that none 
of the models accounts for all sources of 
variation.
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Other Considerations when Planning a 
Microarray Experiment

• Number of arrays
• Types of Samples

- Replication – technical, biological
- Pooled versus individual samples
- Pooled versus amplified samples

• Avoidance of bias
- experimental conditions, mRNA extraction and 
processing, the reagents, the operators, the 
scanners, and so on can leave a “global 
signature” in the resulting expression data.
- Randomization!
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Some Concluding Remarks about BioConductor

• BioConductor is very flexible.
• MANY options are available:

Normalization: constant, contrasts, invariant set, loess, 
qspline, quantiles, VSN
Testing: Wilcoxon rank sum test, t-statistics, moderated 
t-statistics, SAM, EBAM
Multiple Testing Adjustments: Bonferroni, Holm, 
Hochberg, Sidak, Benjamini-Hochberg, Westfall and 
Young. 
Clustering: hierarchical, k-means, PAM, SOM

• Good documentation is available.
• Mail list provides prompt response (often from 

the BioConductor core development team).
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Abbreviations

EST: expressed sequence tag
FC: fold change
FDR: false discovery rate
GSB: gene specific binding
MM: mismatch probe
MAS: Microarray Suite
MBEI: model based expression index
NSB: nonspecific binding
PM: perfect match probe
RMA: robust multichip analysis
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