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Chapter 3
The State of Spatial and Spatio-Temporal
Statistical Modeling

Mevin B. Hooten

3.1 Introduction

The purpose of this chapter is to provide an overview of how statistical analyses
have been used for studying ecological processes on landscapes and where the field
of statistics is headed in general. Various approaches to the statistical analysis of
spatial and spatio-lemporal problems are presented and discussed; also, references
for several suggested readings, containing further information and examples, are
provided at the end of each section. ’

3.1.1 Why Statistics?

Scientific endeavor owes a great debt of gratitude to pioneers in the field of
statistics, a relatively young area of study that has undergone significant change
(including paradigm shifts, as well as both splits and merges in philosophical
underpinnings) since its inception (Stigler 1990; Brown 2000). Historical flux in
the field of statistics aside, one thing can be said with certainty: much of the
scientific progress made in the past century would not have been possible without
it (Salsburg 2001). Contemporary statistical analyses now encompass an incredibly
wide range of methods, some of which can be used to study very complicated
natural systems while still following the original basic tenet of statistics; that is,
formally addressing and characterizing uncertainty when using data to learn about
natural phenomena in an inverse fashion. Inverse modeling is the act of using data
explicitly to learn about the underlying causal process; this is in contrast to
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rd modeling, where models are constructed to simulate possible future
vations of the process under study. In light of this distinction, the act of
; statistical models to data is inherently stochastic inverse modeling. So, one
isk, “where do statistical prediction and forecasting fit in?” These are often
ht of in a forward modeling context, but chronologically, predictions and
1sts depend on the model fit.

ndscape ecology is a field concerned with the study of natural processes
arge spatial extents. Many introductory statistical methods require strong
1ptions that can be difficult for scientists and managers to justify in practice.
f the most commonly required assumptions is that of independence among
»servations, however, most spatial, temporal, and spatio-temporal data are
iatly dependent because of latent spatial and temporal autocorrelation. The
‘autocorrelation” refers to data or residuals (depending on the context) that
irelated with themselve rather than independent. This can present signifi-
hallenges in the development and implementation of appropriate statistical
ses. On the other hand, these forms of dependence are invaluable for making
ifically meaningful predictions and forecasts. Rigorous statistical approaches
posed to ad hoc approaches) then, allow one to formally quantify the inher-
wertainty in predictions and forecasts. The difference between statistical
d hoc approaches is often described as “optimality;” that is, rather than
»orate stochasticity in a haphazard manner, statistical methods provide the
stimates and predictions, using the available data. This is accomplished by
ng that the estimates have good properties (e.g., unbiasedness, minimum
ice among all other estimates). Therefore, statistical estimates and predic-

with high quality properties lead to the best possible scientific inference
the available data.

Main Types of Data

ta will be discussed in detail in the following chapter, only a general
lew is presented here. Statistical analyses of all kinds require quantitative
rements of the process under study. Qualitative observations certainly
heir place in the scientific process (usually in the development of hypoth-
nd interpretation of inference), but statistical methods are not currently
ed to use them directly. Therefore, those measurements useful for
ics come in two broad varieties: discrele, most commonly in the form of
i or quantified categories, and continuous, often measurements of mass in
form. Adequately accommodating various types of data is one of the chief
rns in statistics. To guarantee important properties of statistical quantities
ust pay careful attention to the many characteristics of data (e.g., orienta-

icale, measurement error, dependence) as well as modeling assumptions
rn and Mangel 1997).
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3.2 Statistical Models

3.2.1 Parameters: Fixed or Random?

In general, data are considered as observed random <m.1mc.~omw the probability
distribution they arise from is generally of interest for making inference. When the
form of the distribution is specified as part of the statistical model, the ESBQQM
in the distribution often become the subject of interest and thus SQ.mm?ow@ is
labeled “parametric” statistical modeling. Conversely, :on-@ﬁ&waio. mx.,:m:nm_
modeling seeks to loosen the distributional assumptions made a priori. Non-
parametric models are discussed in more detail in Sect. 3.2.5.

In parametric modeling, parameters are predominantly treated as fixed but
unknown population quantities 1o be estimated using data. It should be noted, gi-
ever, that some of the earliest statistical models [e.g., Laplace’s model for astronomical
quantities and Bayes’ model for billiard balls (Stigler 1990)] considered mﬁmﬂmanm
to be random variables, the probability distribution of which was to be estimated
using the data (Carlin and Louis 2000; Salsburg 2001). The &mmnm.:oo g?«oab the
two views leads to a subtle but fundamentally different implementation and 588.3-
tation of the results (Clark 2007; Cressie et al. 2009). That is, both forms of modeling
are still considered statistical because they serve to formally help learn about natural
phenomena in an inverse fashion while accommodating uncertainty (that is, they
work backwards from the data toward the parameters, rather than forward from .Em
parameters to the data) (Clark 2007); the primary difference then, is in the RmEcnm
inference. If one believes that the true parameters governing the process are Eamwa
fixed quantities then a carefully designed experiment and accompanying frequentist
statistical analysis is in order. In this case, inference will be made in terms of long-run
frequencies, and thus statements such as, “if the experiment were conducted a large
number of times, we would expect to make the same decision approximately 95% of
the time,” are used to convey the results of the analysis.

On the other hand, the treatment of model parameters as random variables can
be useful if data are observational or if measurements were obtained in such a man-
ner that does not guarantee the assumption of fixed parameters holds; in this case,
either a frequentist or Bayesian approach (i.e., methods with specification and
inference based on conditional probability) may be taken. For example, if a set nm
measurements is collected over a period of time (which is nearly always the case in
ecological studies) then one has to ask themselves if the unknown “population
parameter’” varied during that time. The same analogy could be applied to measure-
ments collected over space, and thus it is often most appropriate to treat such
parameters as random and employ methods that characterize the manner in which
they are random (e.g., estimate the inherent stochasticity via a probability distribution).
Another situation where random terms can be useful in a statistical model commonly
arises 1n analysis of variance (Neter et al. 1996). To illustrate this, consider the
situation where, out of 100 study sites, a random sample of 10 is selected. At each
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of the selected study sites, a sample of stationed field technicians collects data at
their site. In this situation, if the researcher wishes to make general inference about
the whole set of one hundred study sites, rather than each of the ten selected sites
individually, they could let the ten sites constitute ten levels of a random factor in
their analysis.

Frequentist and Bayesian statistical methods can both be employed to help learn
about random parameters. Common frequentist approaches to dealing with random
parameters are often in conjunction with fixed parameters and take the form of
mixed models (Neter et al. 1996, pgs. 978-981) and state-space models (Chap. 6 of
Shumway and Stoffer 2006). Many times Bayesian methods are preferred for
modeling random parameters (Cressie et al. 2009) because of their flexibility, ease
in specification and implementation for complex models, and the ability to directly
incorporate prior scientific information (e.g., conclusions resulting from different
data or historically documented quantities in the literature). The frequentist
approach to parameter estimation is still preferred when frequency-based inference
(e-g., confidence intervals) or objectivity in the parameters is desired (Lele et al.
2007), though numerous objective Bayesian methods exist for fitting various statis-
tical models to data (Gelman et al. 2004). Given that statistical analysis can proceed
in either fashion, an important question in the model construction phase is whether
model parameters should be treated as fixed, random, or some combination of both
(i.e., 2 mixed model).

3.2.2 Naive Models

Conventionally, the dominant type of statistical model used to study natural
processes is specified in such a manner that its form facilitates implementation and
capitalizes on the rigor of study design in controlled experiments. For example, the
linear regression model is often a model of choice for linearly linking a response
variable to a set of covariates (Neter et al. 1996), such as in linking coyote abun-
dance to a set of environmental variables like canopy openness, distance to nearest
house, or distance to paved road, as discussed by Kays et al. (2008). If specified with
independent additive Gaussian error, numerous beneficial properties of the esti-
mated regression coefficients and predictions can be exploited for inference
(Christensen 2002). In fact, rather than specify a more scientifically meaningful
model (e.g., a nonlinear model with multiplicative error for example), it is a
common practice to perform various transformations of the response and/or covariate
data to justify necessary assumptions and the use of a linear model. In other words:
when you’ve got a hammer, every problem starts to look like a nail.

It should be noted, however, that a simplified analysis does not imply a useless
analysis. That is, naive models such as linear models with continuous response
variables and additive error can be fit easily, and 1n situations where statistical
assumptions hold, they can be readily used to make valid inference about underlying
natural processes of interest. Such models can be thought of as “structurally
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parsimonious,” in the sense that they are sparse on model structure, but still useful
under certain circumstances. Also, linear models are not always trivial. Consider
the common situation in landscape ecological studies where a continuous response
variable is measured over a landscape (e.g., soil moisture) and the researcher
wishes to investigate its relationship to other important environmental features (i.e.,
covariates) of the landscape (e.g., slope, aspect, elevation, percent vegetation cover)
and also possibly utilize that information to make predictions. In order to appropri-
ately employ multiple linear regression analysis for making inference about the
natural process, several model assumptions must be justified. A critical assumption
that is often overlooked in such analyses is that the additive model errors are inde-
pendent. In fact, assessing and accommodating possible spatial dependence in the
errors is the premise of geostatistics (Cressie 1993; Diggle and Ribeiro 2007).
Erroneous inference is one consequence of failing to account for dependence in the
error when it is present (Chap. 9 in Waller and Gotway 2004). This fact is easily
shown, and often used as an early exercise in a course on spatial statistics. In short,
if residual spatial dependence exists, parameter estimates can be both biased and
have incorrect precision (Chap. 6 in Schabenberger and Gotway 2005).

Generalizing the linear model specification used in regression analysis to
accommodate residual spatial dependence is relatively simple vet adds significant
complexity to the fitting procedure. That is, rather than assume observations can be
modeled by a large-scale trend (involving spatial covariates and an associated set
of regression coefficients) plus some independent measurement error, we wish to
allow for possible dependence in these additive errors. In this way, any potential
residual antocorrelation beyond what can be explained by the large-scale trend may
be accounted for. In most cases, such autocorrelation in the errors can be character-
ized via variogram estimation and modeling (Chap. 2 in Cressie 1993), and then
incorporated into the linear model for parameter estimation and prediction. On the
surface, the regression model still looks the same (i.e., response = covariate
effects +error), though the incorporation of correlated error necessitates a slightly
more complicated estimation procedure for the regression coefficients (i.e., gener-
alized least squares rather than ordinary least squares).

Once the residual spatial autocorrelation is taken into account, the prediction of
continuous spatial processes is referred to as Kriging (Chap. 3 in Cressie 1993) and
can be employed, under certain distributional assumptions, with relative ease; in
fact, this can often be accomplished at the click of a button in many geographic
information systems (GIS) and statistical software. Many types of Kriging have
been developed for spatial prediction in various circumstances. For example, Ver
Hoef et al. (2006) provide a method for extending Kriging from the standard
Euclidean setting to stream networks.

When the response variable of interest has discrete support (e.g., presence/
absence or counts of an organism at various locations across a landscape) similar
naive models can be useful for linking the observed natural process to a set of covari-
ates. These models are referred to as generalized linear models and many specifica-
tions require similar assumptions about independence of errors, but can also be
modified to accommodate correlated errors if necessary (Chap. 6 in Schabenberger
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nd Gotway 2005). Some of the most common generalized linear models are for
inary data (i.e., logistic and probit regression) and can be used for studying pres-
nce/absence or occupancy (Royle and Dorazio 2008). For example, Hooten et al.
2003) and Gelfand et al. (2006) present similar approaches for modeling vegetation
bundance on a landscape using generalized linear models and binary data. In the
ormer, Hooten et al. (2003) use presence/absence data on forest understory legumes
i.e., Desmodium glutinossum and D. nudiflorum) collected over a large number of
lots spread across a Southern Missouri watershed as part of the Missouri Ozark
orest Ecosystem Project. In this study, large-scale spatial predictions of these plant
istributions were desired. Thus, a generalized linear mixed model was specified to
xplicitly accommodate the binary data while characterizing the underlying proba-
ility of presence in terms of a set of spatial covariates (i.e., aspect, elevation, land
vype, and soil depth) and latent spatial autocorrelation. This model allowed for the
rediction of probability of presence across the entire study area as well as provided
1aps of prediction standard deviation as a measure of uncertainty in the
redictions.

In situations where boundless counts of organisms are the response variable of
aterest, a Poisson regression approach can be taken (see Royle and Dorazio 2006
or an example of avian abundance modeling). Another study, by Royle and Wikle
2005), discusses a generalized linear model for predicting avian abundance across
he Eastern United States using North American Breeding Bird Survey (BBS) data.
n their study, they assumed that BBS route counts of species followed a Poisson
istribution. They incorporated covariate effects and spatial autocorrelation in the
auch same manner as Hooten et al. (2003), but in this case, rather than probability
f presence; they linked these spatial effects to the log of the Poisson intensity
rarameter. This allowed Royle and Wikle to make large-scale predictive maps for
ird abundance (specifically for Carolina Wren in this study) as well as maps of
rediction uncertainty.

Numerous significant scientific findings have benefited from the use of a naive
nodel structure such as the linear model, but new tools have come to light with
dvancements in statistical theory and the advent of high performance personal
omputers.

1.2.3  Scientific Models

n this section, “scientific” is used to describe those statistical models that explicitly
ncorporate mathematical and/or physical processes. Such specifications are often
nost useful for studying time-evolving natural processes because they can incorpo-
ate explicit dynamic behavior (Hilborn and Mangel 1997). Because landscape
:cology involves the study of spatial systems, relevant statistical models with a
emporal component are termed spatio-temporal.

The study of dynamical systems has a long history in both pure and applied
nathematics but only recently has it become prominent in statistics. As with static
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systems such as the spatial-only examples of the last section, naive statistical models
can be employed for studying temporal systems. In these cases, the “dynamics”
(i-e.. the components of the model controlling the change in the system being studied
over time) are expressed in a general form that may be flexible but lacks a direct
scientific interpretation. The temporal autoregressive specification is an example of a
naive time-series model where the form contains a distinct dynamic component but
in most cases is over-simplified (Chap. 9 in Clark 2007). Employed in an ecological
setting, such models may capture dynamic behavior and can often be useful for making
inference but are not built on formal principles of ecological theory. Hooten and
Wikle (2007) provide an example of a naive spatio-temporal model that was used for
studying the changes in dynamics of forest growth. In this study, a vector autoregres-
sive model is used to analyze the differences in a reduced dimensional dynamical
system (representing the spatio-temporal growth in shortleaf pine forests) before and
after an anthropogenically created change-point and in response to climatic fluctua-
tion. Their findings included a notable acceleration in the temporal evolution of
shortleaf pine growth after a massive clearing of forest at the turn of the twentieth
century and also in response to periods of drought. This model can be considered
naive because, although it is dynamic, the dynarhics are represented by a simple
autoregressive evolution equation where the estimated parameters have no inherent
scientific meaning or interpretation.

In contrast to naive models, scientific models for studying ecological systems on a
landscape over time explicitly incorporate meaningful physical processes. For example,
the diffusion (i.e., dispersal in ecological terms) of a natural phenomenon through a
medium can be expressed using a number of different mathematical models such as:

* Integro-Difference Equations (IDE): Wikle (2001) models a dynamic atmo-
spheric process by integrating the product of two functions; one describing the
increase in cloud intensity over time and the other represented by a spatial redis-
tribution kernel that describes cloud spread over time. The distinguishing charac-
teristic in IDE models is that the dynamical component operates via integration.

* Fartial Differential Equations (PDE): The mathematical opposite of integration is
differentiation and this can also be a reasonable way to describe some natural
dynamic processes. For example, Wikle (2003) places a spatio-temporal PDE model
into a statistical framework for describing the spread of an invasive species over the
North American continent using BBS count data. These models are distinguished
from IDE models by the fact that the change in the underlying process of interest
(e.g., bird abundance) is expressed in terms of spatial and temporal derivatives,

* Markov Matrix Equations: Another approach to modeling both spreading and
growing phenomena is through the use of matrix models (Caswell 2001).
Though typically employed to study changes in population demographics,
matrix models can also be placed in a statistical spatio-temporal context. For
example, Hooten et al. (2007) use a spatio-temporal matrix mode] to characterize
and forecast the invasion of the Eurasian Collared-Dove in North America.
While PDE and IDE models are inherently continuous in time and space, matrix
models are derived explicitly in a discrete spatio-temporal setting.
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* Agent-Based Models: Though the class of agent-based models is quite large,
many consider them to include individual-based models. In general, agent-based
models can be thought of as bottom-up models (as opposed to top-down), and
are constructed by specifying how a small scale process behaves and then
scaling them up to examine their larger-scale properties (Grimm and Railsback
2005). Given that this is how many believe all natural systems work, agent-based
modeling has great potential. Hooten and Wikle (2010) construct a bottom-up
statistical model to describe a spreading epidemiological process. Specifically,
they specify a spatio-temporal cellular automata model that is capable of char-
acterizing the complex dynamical behavior of the rabies epidemic as it spreads
through raccoon populations in Connecticut.

3.2.4 Hierarchical Models

Many of the naive models discussed earlier can be specified hierarchically (and are
in many of the references provided), though complicated scientific models (including
spatial and spatio-temporal dynamic models) can often be formulated with ease
using a hierarchical framework. It is important to note here that the term “hierarchical,”
though always similar in spirit, is used differently across disciplines. In statistics, a
hierarchical model is one that specifies a complicated joint probability distribution
in terms of a set of simpler conditional distributions using well-known results from
probability (see Cressie et al. 2009 for an excellent overview). In essence, this allows
the modeler to break up a large intractable problem inio a set of simpler problems
that can be readily solved. Though the details are technical in nature, the basic premise
is intuitive. Bayesian methods are particularly useful for specifying and fitting
hierarchical models and thus have become very popular recently in complicated
statistical analyses. When specifying a Bayesian hierarchical model, one can
generally consider three main components (Berliner 1996): The data model (e,
likelihood), the process model, and the parameter model (i.e., prior distribution). The
product of these three appropriately scaled models (i.e., probability distributions)
ylelds the “posterior distribution,” a joint distribution of the model parameters and
process given the data. This distribution is generally unknown and analytically
intractable, hence the need to specify it in terms of a set of simpler conditional
models. The first and second components (i.e., the likelihood and process model) by
‘hemselves have been considered from a traditional perspective in statistics, where
t 1s the third component (i.e.. the prior) that is both necessary and useful in a
Bayesian implementation. In principle, the prior distribution contains all of the infor-

mnation about the model parameters that is available before the current data were

sollected. In practice, it is sometimes the case that little or no prior information

:xists, or if so, cannot be specified in terms of a probability distribution; thus, in such

;ases, a non-informative or vague distribution is then used for the parameter model

jo that any statistical learning is forced to come from the data rather than from an

*xogenous source. The posterior distribution is then used to make inference and can
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be thought of as the distribution of the process and parameters that has been updated
(from the prior) using the data. . . o

For further detail and examples of statistical hierarchical modeling in ecology
see Banerjee et al. (2004), Zhu et al. (2005), Clark and Gelfand (2006), ?mc et m_.
(2007), and Royle and Kery (2007). Note that although the Eogoac_.omam_ details
may be technical and custom software is often necessary, many m:.w:w:om,_ packages,
tutorials, and open-source code for fitting such models are Rwa:x available. O:o
caveat is that, in high-dimensional settings, the algorithms used to _EE.QBmE.EmT
archical Bayesian models can be computationally ocEUQmoBm.. Ecological science
is currently transitioning from being data-poor to data-rich. With GIS layers, auto-
mated monitoring devices, and remotely sensed data becoming more prevalent, the
field of statistics is rapidly adapting to meet such challenges. New methods for
using statistical models with massive datasets are being Rmim:u\ developed for the
purposes of obtaining predictions in high-dimensional mn:_zm.m. T:..Ra mm al. Am.oomv
and Shi and Cressie (2007) have developed methods for modeling Emr-a_ao.:m_og_
spatial datasets and illustrate their utility using examples n@:m_:_.:m to mmaz:w data.
Specifically. Shi and Cressie (2007) employed fixed rank .r:m:_m Aonmmm._o and
Johannesson 2006) to obtain global predictions of atmospheric aerosols (an impor-
tant forcing component for climate models) using massive remotely sensed am.g_woa
resulting from the MISR sensor on NASAs Terra satellite. These rigorous statistical
methods are shown by Shi and Cressie (2007) to be superior over the previously
used ad hoc approaches.

3.2.5 Semi- and Non-parametric Models

In the current scientific era, statistics is transforming from a ficld that sought to get
as much information as possible out of a small amount of data into a field that :n.oam
to reduce the dimensionality of the data before gleaning any useful information.
Where scientific modeling seeks to explicitly introduce information about the
underlying physical process into the model (which could be thought of as super-
vised model building), the statistical sub-discipline of machine learning (i.e., ams
mining) seeks to uncover naturally occurring relationships in data rather than build
in predefined ones (Hastie et al. 2001).

Non-parametric statistical methods generally take a distribution-free approach to
modeling. That is, they seek to make as few a priori assumptions about the am.S as
possible. This can be incredibly valuable when data do not conform to conventional
modeling assumptions and/or when no scientific modeling approach is ocio:w or
available. Many non-parametric methods are able to fit data and make predictions
extremely well, often better than any other technique; the only downside is that they
sacrifice scientific interpretability. That is, because they do not explicitly build
scientific information into the model itself, they must rely on post hoc scientific
interpretations and inference. In fact, even though methods for machine learning
involve elegant mathematical theory, they are still often treated as mere “black box”
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iodels by their users; however, the same could be said about many conventional
atistical methods. See Cutler et al. (2007) and Chap. 8 in this volume for an
<ample of a promising new non-parametric method, called “random forests,”
>plied to invasive plant classification, rare lichen presence, and nesting site prefer-
1ce by cavity nesting birds.

Semi-parametric statistical models include both parametric and non-parametric
>mponents (Chap. 9 in Hastie et al. 2001). Various smoothing splines or wavelets
e often used to implement such models, and in some specific cases, spatial predic-
ons using these methods end up being equivalent to those via Kriging (Nychka
J00). Additive semi-parametric models are generally specified in a regression-
yle framework and can be useful for accommodating more complicated nonlinear
lationships between response variables and covariates (Efron and Tibshirani
291). For example, Holan et al. (2008) present an approach to modeling site-specific
"0p response to varying treatments (e.g., irrigation) in a spatial setting using
»mi-parametric relationships between the response and predictors.

.3 Optimal Design

he notion of optimal sampling is not new; however, extensions of this concept to
1e spatial and spatio-temporal setting are being proposed with more regularity
Jlea 1984; Cressie 1993). In this setting, the term “optimal” implies that the
:lected sampling design performs the best with regard to some design objective (Le
nd Zidek 2006). The choice of the design objective can vary depending on the goals
f the study. For example, if the study involves the collection of spatial data at a
nite set of locations across a landscape with the hopes of learning about a natural
rocess at unobserved locations within the study area, then a design criterion based
n spatial prediction error may be reasonable. In that case, one would examine all
ossible sampling designs to find the one design that minimizes prediction error
ariance (Stevens and Olsen 2004). In other situations with more vague study goals
».g., data are being collected for many purposes and/or future modeling efforts), one
1ay wish to reduce uncertainty in general; entropy-based design methods have been
roposed and successfully used in these cases (Le and Zidek 2006). Regardless of
le design criterion chosen, optimality allows one to get the most “bang for their
uck™ out of the data collected. That is, by exploiting properties pertaining to the
1anner in which the natural process is observed, it is possible to reduce uncertainty
1 the information gleaned from the data in a more efficient manner rather than just
ollecting more data. A simple example of how an optimal design could be useful is
‘hen more efficient estimation of the spatial structure in the process is desired.
1such a case, both a regularly spaced sampling scheme and a fully random sampling
cheme are inefficient (i.e., sub-optimal); however, a combination of the two can
erform substantially better by providing better coverage of the study area (and thus
eing more representative) while still capturing small scale spatial structure in the
rocess (Stevens and Olsen 2004; Zhu and Stein 2006; Zimmerman 2006).
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Optimal design methods have also been proposed for spatio-temporal settings
(Wikle and Royle 1999). That is, if one seeks to characterize a dynamically evolv-
ing system, specific forms of uncertainty can be reduced if care is taken in the
construction of the sampling or monitoring design over time. In the current age of
data collection, with remote wireless sensors constantly measuring features of the
environment and mobile roving sensors capable of adaptively sampling a spatial
domain, dynamic optimal monitoring designs will become more prevalent and use-
ful. As an example, in a dynamic setting where a process is being monitored repeat-
edly over time and the data collected are to be used for various purposes including
estimation of the dynamics of the system and statistical forecasting, the design
objective may be to reduce uncertainty in the forecast (possibly via prediction error
variance). In this case, several monitoring approaches could be taken to observe the
system. If the system is evolving dynamically (i.e., changing over time) it is sen-
sible to allow the design to change over time as well. This way, the monitoring
scheme can adapt to capture important aspects of the behavior in the system.
Allowing for roving monitors over time can help to avoid re-sampling redundant
behavior and instead move to where the action is occurring. Ultimately this can
maximize the power of the coliected data given the available resources. An example
of this kind of optimal design implemented to study plant community dynamics is
presented by Hooten et al. (2009).

3.4 Conclusion

Statistics is an ever-changing field, constantly adapting to the new developments and
needs of the scientific disciplines that depend on it. In this new and exciting com-
puter era, we are witnessing a blurring of the lines between previously distinct areas
of study. Methods for statistically analyzing spatial processes are built into GIS
software, where spatial data manipulation has been occurring for decades; GIS tools
are also being built into statistical software to aid in exploratory analyses and visu-
alization of modeling results on spatial and spatio-temporal domains. In the face of
mountains of data, machine leaming and data mining methods are becoming more
prominent, as is the need for formal data management skills. We are also seeing the
direct integration of information formerly restricted to applied mathematical and
physical studies into rigorous statistical analyses. Likewise, it can be said that new
statistical methods (e.g., hierarchical Bayesian models) are being readily used in the
applied mathematics literature. Statistics is growing and changing and we are rapidly
approaching a time where every scientific problem, no matter how complex, can be
considered naturally in a statistical framework. Landscape ecology, as a field con-
cerned with multidimensional systems and an abundance of data, stands to benefit
greatly from new statistical methods for analyzing spatial and spatio-temporal data.
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