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Abstract1

1. Bayesian hierarchical models allow ecologists to account for uncertainty and make2

inference at multiple scales. However, hierarchical models are often computationally3

intensive to fit, especially with large data sets, and researchers face trade-o↵s between4

capturing ecological complexity in statistical models and implementing these models.5

2. We present a recursive Bayesian computing (RB) method that can be used to fit6

Bayesian models e�ciently in sequential MCMC stages to ease computation and7

streamline hierarchical inference. We also introduce transformation-assisted RB (TARB)8

to create unsupervised MCMC algorithms and improve interpretability of parameters.9

We demonstrate TARB by fitting a hierarchical animal movement model to obtain10

inference about individual- and population-level migratory characteristics.11

3. Our recursive procedure reduced computation time for fitting our hierarchical movement12

model by half compared to fitting the model with a single MCMC algorithm. We13

obtained the same inference fitting our model using TARB as we obtained fitting the14

model with a single algorithm.15

4. For complex ecological statistical models, like those for animal movement, multi-species16

systems, or large spatial and temporal scales, the computational demands of fitting17

models with conventional computing techniques can limit model specification, thus18

hindering scientific discovery. Transformation-assisted RB is one of the most accessible19

methods for reducing these limitations, enabling us to implement new statistical20

models and advance our understanding of complex ecological phenomena.21

Keywords: Bayesian filtering, MCMC, parallel computing, recursive, transformation22
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Introduction23

Ecological systems are characterized by dynamics and uncertainty at many scales, but24

observing all relevant scales may be di�cult or impossible (Wiens 1989). Instead, we must25

use models to scale and connect processes across multiple levels (Levin 1992), such as from26

the scale of observation to the hypothesized scale of biological process, or from a single27

individual or species to a population or community. For example, in movement ecology,28

we often collect telemetry data and observe movement at the individual-level, but wish29

to make inference on the population as a whole, like to better understand responses to30

environmental conditions that are similar among individuals (Hooten et al. 2016). Alternatively,31

modeling ecosystems or ecological communities often involves joint analysis of many taxonomic32

groups as well as the processes that connect them (Levin 1992, Warton et al. 2015). Finally,33

conducting ecological studies introduces additional uncertainty, including sampling and34

detection uncertainty as well as spatial and temporal variation between study sites and35

years, which must be considered when specifying ecological models (Royle and Dorazio36

2008, Beissinger et al. 2016).37

Bayesian hierarchical modeling has become a popular tool in ecology, facilitating scaling38

by relating process models at one level to parameters at another level (Royle and Dorazio39

2008, Hobbs and Hooten 2015). Hierarchical models are flexible and facilitate the inclusion40

of multiple sources of uncertainty in the data, process, and parameter components (Berliner41

1996, Cressie et al. 2009). For example, many integrated population models (IPMs) use a42

Bayesian hierarchical framework to integrate multiple data sources to understand population43

dynamics and demographic processes (Schaub and Abadi 2011). However, IPMs and other44

hierarchical models can quickly become large and time-consuming to fit.45

Ecological science has seen a rapid increase in the availability of big data, advanced46

statistical techniques, and collaborative research, and our ability to specify ecological models47

that capture more of the complexity of natural phenomena has improved substantially as a48

result (McCallen et al. 2019). However, many ecologists have also reached the point where49
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computational demands limit what can be modeled. Further, as ecologists are increasingly50

interested in long-term monitoring and prediction (Dietze et al. 2008), statistical models51

must be fit each time data are added. Collaborations with computer and data scientists52

and new software packages for e�cient computing have introduced sophisticated computational53

techniques (e.g., distributed computing) in ecological science, but barriers to wide implementation54

of these approaches are a bottleneck for advancing ecological modeling (Visser et al. 2015,55

Hampton et al. 2017). Therefore, more accessible approaches for reducing computational56

limitations are needed to support progress in ecological modeling and understanding.57

Recursive computing techniques, also known as batch or modular computing or Bayesian58

filtering, are used to fit a statistical model in a series of steps (Särkkä 2013). These techniques59

simplify computing at each step, without modifying the original model specification or60

resulting inference. One recursive Bayesian computing (RB) method, introduced by Lunn61

et al. (2013), leverages the properties of Markov Chain Monte Carlo (MCMC) sampling62

(Gelfand and Smith 1990) to lessen the computational burden of fitting hierarchical models.63

The authors used RB to reconcile the results of several independent studies in a meta-analysis64

(Lunn et al. 2013), and the method has been applied in ecological contexts to facilitate65

online updating (Hooten et al. 2020), model individual and group variation in physiological66

measurements (Hooten and Hefley 2019), and scale movement and resource-selection models67

from individuals to populations (Hooten et al. 2016, Gerber et al. 2018). While not unique68

to ecology, RB is a natural computational technique for ecologists to consider because the69

RB framework mirrors many ecological study designs and hierarchical models.70

Consider a study of invasive cheatgrass (Bromus tectorum) occurrence in grasslands in71

Montana, in the northwestern United States (Pearson et al. 2018). Cheatgrass occurrence72

was monitored at 20 grassland sites by sampling 20 randomly selected 1-m2 plots within73

each site. Suppose we want to model the probability of cheatgrass occurrence yij in Montana74

4



grasslands using a Bernoulli generalized linear mixed model (GLMM) specified as75

yij ⇠ Bern(pj), i = 1, ..., N, j = 1, ..., J, (1)

logit(pj) ⇠ N(µ, �2), (2)

µ ⇠ N(µ0, �
2
0), (3)

�2 ⇠ IG(q, r), (4)

where j indexes sites and i indexes plots within each site. In this model, pj is the probability76

of cheatgrass at site j, and logit(pj) arises from a Gaussian distribution with study-wide77

parameters µ and �2, arising from Gaussian and inverse gamma distributions, respectively78

(Fig. 1). Thus, pj are “random e↵ects” because they will vary for each site but will arise79

from a single underlying distribution. We use Gaussian random e↵ects, with the logit link80

function to constrain pj to the proper support, and seek inference on µ. The full-conditional81

distributions for the logit(pj) are not analytically tractable, so the logit(pj) cannot be82

sampled using Gibbs updates and will need to be tuned individually to fit the model (Gelfand83

and Smith 1990). This minimal example could be fit in a single, conventional MCMC84

algorithm, but we describe the procedure to fit it recursively to demonstrate RB methods.85

We could fit this model using RB by first partitioning the data by site, Y = (y0
1, ...,y

0
J)

0.86

These individual partitions would be analyzed independently in a first-stage MCMC algorithm87

with a temporary prior for logit(pj) to obtain temporary posterior distributions for the88

parameters logit(pj). Then, the resulting temporary posterior distributions would be used89

as proposals in the second-stage algorithm to update the study-wide parameters µ and90

�2, and the logit(pj) given µ and �2 (Lunn et al. 2013). However, we would still need to91

tune the updates for each logit(pj) by hand in the first stage, because the full-conditional92

distributions are not analytically tractable. This would slow model fitting and may be93

di�cult.94

Instead, we propose a modification of RB, which we call transformation-assisted RB95
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(TARB), to eliminate tuning in the first stage and ease model fitting with unsupervised96

algorithms and e�cient Gibbs updates. In what follows, we demonstrate how to implement97

RB and TARB to fit ecological models and apply TARB to a hierarchical movement model98

for avian migration to make individual- and population-level inference. Additionally, we99

discuss the implementation of TARB to other ecological models to illustrate its wide applicability.100

Methods101

Our Bernoulli GLMM is a hierarchical model comprised of data, process, and parameter102

components (Berliner 1996), with a set of latent random e↵ects ✓j = logit(pj) for j =103

1, ..., J (Fig. 1). The group-level parameters  = (µ, �2)0, which correspond to the full104

study area in our example, describe the distribution underlying the partition-level (e.g.,105

site-level) parameters ✓j. For data partitioned Y = (y0
1, ...,y

0
J)

0, this can be written106

yj ⇠ [yj|✓j], j = 1, ..., J, (5)

✓j ⇠ [✓j | ], (6)

 ⇠ [ ]. (7)

Note that square brackets [·] denote probability distributions (Gelfand and Smith 1990).107

In general, ✓j could be an m ⇥ 1 vector that describes the partition-level process with108

m covariates. The data partitions yj do not need to be equal-sized, and can represent109

any natural data subset such as di↵erent field sites as in our example, telemetry fixes for110

distinct individuals, results from several studies in a meta-analysis, or data on di↵erent111

species in a community, as long as dependence within the data partitions is accounted for112

in the data or process models.113

The RB approach presented by Lunn et al. (2013) is carried out by specifying prior114

distributions [✓j] in the first-stage to obtain a sample from the posterior distributions115

[✓j|yj] / [yj|✓j][✓j] for each partition j = 1, ..., J independently. Next, the hierarchical116
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model in (5)-(7) is fit using a second-stage MCMC algorithm with Metropolis-Hastings117

(MH) updates for ✓j, in which random samples from the temporary, first-stage posterior118

distributions for ✓j are used as the proposals ✓(⇤)j . This eliminates the need for tuning in119

the second-stage MH updates. Also in the second-stage algorithm, the group-level parameters120

 are updated based on their full-conditional distributions [ |·] /
�QJ

j=1[✓j| ]
�
[ ]. The121

MH acceptance probability for each ✓(⇤)j is min(r(⇤)j , 1) where122

r(k)j =
[yj|✓

(⇤)
j ][✓(⇤)j | (k�1)][✓(k�1)

j |yj]

[yj|✓
(k�1)
j ][✓(k�1)

j | (k�1)][✓(⇤)j |yj]
, (8)

=
[yj|✓

(⇤)
j ][✓(⇤)j | (k�1)][yj|✓

(k�1)
j ][✓(k�1)

j ]

[yj|✓
(k�1)
j ][✓(k�1)

j | (k�1)][yj|✓
(⇤)
j ][✓(⇤)j ]

, (9)

=
[✓(⇤)j | (k�1)][✓(k�1)

j ]

[✓(k�1)
j | (k�1)][✓(⇤)j ]

, (10)

for MCMC iteration k = 1, ..., K. Notably, neither the MH ratio (10) nor the full-conditional123

distributions for  involve the data y. For the data model to cancel in the numerator and124

denominator of the MH ratio (10), the proposals ✓(⇤)j should be independent draws from125

the first-stage posterior distributions for ✓j. Thus, in practice, we sample ✓(⇤)j randomly126

with replacement from the first-stage Markov chains so that the samples are uncorrelated127

(Lunn et al. 2013, Hooten et al. 2020).128

If the hierarchical model is specified such that the conditional distributions for ✓j are129

not analytically tractable, like in our GLMM, then the first stage of the model must be130

fit using MH or importance sampling (Geweke 1989) which must be tuned by the user131

for each partition (Hooten et al. 2016). Thus, rather than specifying a first-stage prior132

directly on ✓j, we use TARB and specify a prior [g(✓j)] on a transformation g(✓j) of the133

parameters ✓j. It is most advantageous to specify g so that the first-stage priors on g(✓j)134

are conjugate with the data model to allow us to use an automated Gibbs sampler in the135

first stage. In GLMMs and other hierarchical models, we often specify models so that136

parameters and random e↵ects arise from Gaussian distributions, and use a link function137
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to constrain these parameters to the appropriate support. Thus, in these cases, g will138

likely be a back-transformation (i.e., the inverse of the link function) that allows us to139

specify conjugate first-stage priors. However, unlike if we were to specify a di↵erent model140

to facilitate conjugacy, using TARB allows us to incorporate prior knowledge and obtain141

inference in terms of the original model specification. For example, if we let g(✓j) = logit�1(✓j)142

in our cheatgrass example, then we can specify a temporary beta prior on pj in the first-stage.143

In this example, the benefit of doing so extends beyond conjugacy to a first-stage posterior144

distribution that can be written analytically, and therefore does not require MCMC to145

sample. We provide the complete procedure to fit the cheatgrass GLMM using TARB,146

with code, in the Supporting Information (Appendix A).147

We need to use the resulting first-stage posterior distribution as a proposal distribution148

in the second-stage MCMC algorithm, but the first stage posterior distribution [g(✓j)|yj]149

is on the transformed parameters g(✓j). Thus, to account for the first-stage prior on transformed150

parameters, we must modify the MH ratio (10) and use a change of variables technique to151

ensure the proposal is on the same transformation that appears in the process component152

(6) of the original hierarchical model. While we could easily use the first-stage posterior153

distribution to obtain a sample from the desired posterior distribution [✓j|yj], the MH154

ratio requires us to evaluate the probability density function [✓j|yj] rather than sample155

from it. There are many possible methods for obtaining this distribution, including analytical156

change of variable techniques and numerical approaches. For continuous random variables,157

we use a change of variables technique where158

[✓j|yj] = [g(✓j)|yj]|J(g(✓j))|, (11)
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in which J(g(✓j )) is the Jacobian matrix defined as159

J(g(✓j)) ⌘

2

66664

�g1(✓j)
�✓j,1

· · · �g1(✓j)
�✓j,p

...
. . .

...

�gpg (✓j)

�✓j,1
· · · �gpg (✓j)

�✓j,p

3

77775
. (12)

The Jacobian matrix consists of partial derivatives of each element of g(✓j) with respect to160

each element of ✓j. Its determinant |J(g(✓j))| maps the change in the transformed variables161

to the change in the non-transformed variables (dg(✓j) onto d✓j), yielding the correct162

probability distribution of the non-transformed variable when multiplied to the probability163

distribution of the transformed variable. Thus, substituting (11) for the proposal in the164

second-stage MH ratio (10) results in165

r(k)j =
[yj|✓

(⇤)
j ][✓(⇤)j | (k�1)][✓(k�1)

j |yj]

[yj|✓
(k�1)
j ][✓(k�1)

j | (k�1)][✓(⇤)j |yj]
, (13)

=
[✓(⇤)j | (k�1)][g(✓j)(k�1)]|J(g(✓j)(k�1))|
[✓(k�1)

j | (k�1)][g(✓j)(⇤)]|J(g(✓j)(⇤))|
. (14)

The data component of the hierarchical model cancels in the MH ratio (14) associated166

with the second-stage MCMC algorithm regardless of the transformation used in the first-stage167

temporary prior, and we account for the transformation via the determinant of the Jacobian168

in the modified TARB ratio (14). In our cheatgrass GLMM, because ✓j = pj is a scalar,169

the Jacobian simplifies to the derivative of g = logit�1(pj) with respect to logit(pj) (Appendix170

A). Thus, we can use TARB to create unsupervised first-stage algorithms that can be171

easily parallelized and a second-stage MCMC algorithm that does not rely on the data172

model. This results in substantial computational savings when the data model is complex173

or there are many data models to fit and allows the second stage to be updated easily if174

new data partitions become available.175
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Application: White Stork Migration176

To demonstrate TARB, we developed a hierarchical animal movement model for the migratory177

behavior of white storks (Ciconia ciconia) in western Europe to obtain individual- and178

population-level inference for migration characteristics. We analyzed data from J = 15179

individuals tracked with GPS units from 30 July 2018 – 29 Sept 2018 (Fig. 2, Cheng et al.180

2019, Fiedler et al. 2019). These data are available in the R package ‘moveVis’ (Schwalb-Willmann181

et al. 2020).182

Model statement183

We specified a continuous-time hierarchical model for stork movement with the data component184

sj(ti) ⇠ N(sj(ti�1)�rp(sj(ti),�j)dti, �
2
jdtiI), (15)

where sj(ti) is the measured position of individual j at time i (for j = 1, ..., J and i =185

1, ..., nj). We defined the potential function in (15) as p(s,�j) ⌘ x
0(s)�j, which describes186

a surface upon which an individual is more likely to move “downhill” (Brillinger 2010,187

Hooten et al. 2017). In our specification, this surface is a linear function of covariates x(s)188

and will influence the speed and directional persistence of movement. The term dti represents189

the change in time between successive positions sj(ti�1) and sj(ti), and I is the 2 ⇥ 2190

identity matrix. The statistical model in (15) converges to the stochastic di↵erential equation191

(SDE)192

sj(t) = �rp(sj(t),�j)dt+ �jdbj(t), (16)

as dt ! 0, where dbj(t) is bivariate Gaussian white noise.193

In the data model (15), the parameters �2
j relate to the speed of the migrating individuals194

and will vary around a group-level speed. However, due to the positive support of the195
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variance components �2
j , we chose to model the individual-level process relating to migration196

speed in the transformation log(�j), so that the support is unbounded and can be suitably197

modeled with a Gaussian distribution. Otherwise, to create Gibbs updates for �2
j directly198

in a single-stage algorithm, we would need to specify a conjugate inverse gamma process199

model on �2
j , and specifying hyperpriors on the associated shape and scale parameters200

would be neither trivial nor biologically intuitive. Thus, we specified a process model for201

log(�j) instead of �2
j , implying the transformation function �2

j = g(log(�j)) = e2 log(�j).202

In our example, we expected migration to occur primarily in a single direction and203

specified x(s) = s2 where the second component of position s corresponds to latitude and204

the coe�cient vector is comprised of a single parameter �. Thus, the negative gradient205

of the potential function in (15) simplifies to �rp(sj(t),�j) = �(0, �j)0. However, this206

simplification is based on the assumption that all individuals will migrate in a north/south207

orientation. To allow for individual variation in the bearing, we multiplied the potential208

function in (15) by the rotation matrix209

M ⌘

0

B@
cos(�j) � sin(�j)

sin(�j) cos(�j)

1

CA , (17)

where �j is the angle from south of a migratory path, resulting in the data model210

sj(ti) ⇠ N(sj(ti�1)� �j

✓
sin(�j)

cos(�j)

◆
dti, �

2
jdtiI), (18)

Assuming that the variability in �j and log(�j) across individuals can be accounted211

for as Gaussian random e↵ects and that individual variability in �j does not arise from an212

underlying group-level distribution, we have �j ⇠ N(µ�, �2
�), log(�j) ⇠ N(µ�, �2

�), and213

�j ⇠ Unif(0, ⇡), where population-level means µ� and µ� are modeled with Gaussian priors214

and �2
� and �2

� arise from inverse gamma priors (full model in Supporting Information,215

Appendix B).216
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Two-stage implementation217

We fit our model to a subset of the stork migration data (approximately two observations218

per day per individual) using TARB. In the first stage, we specified individual-level models219

using the temporary prior [�j, �2
j ] = [�j][�2

j ] where �j ⇠ [�j] ⌘ N(µ0, �2
0) and �

2
j ⇠220

[�2
j ] ⌘ IG(q0, r0) for j = 1, ..., J . Thus, in the first stage, we sample from the posterior221

distribution222

[�j, �
2
j ,�j|Sj] /

njY

i=2

[sj(ti)|�j, �2
j ,�j][�j][�

2
j ][�j], (19)

for each individual j = 1, ..., J . We sampled sequentially from the conjugate full-conditional223

distributions [�j|·] and [�2
j |·] using Gibbs updates and from [�j|·] using a MH update in224

an MCMC algorithm in R (version 3.6.1) that we parallelized over individuals with the225

‘parallel’ package (R Core Team 2019).226

To use samples from the first-stage models as proposals in the second-stage algorithm,227

we calculated the Jacobian determinant in (14). Letting ✓j ⌘ (�j, log(�j))0, and the 2 ⇥ 1228

vector transformation g(✓j) be comprised of components g1(✓j) = �j and g2(✓j) = e2 log(�j),229

we calculated the Jacobian230

J(g(✓j)) ⌘

2

64
�g1(✓j)
��j

�g1(✓j)
� log(�j)

�g2(✓j)
��j

�g2(✓j)
� log(�j)

3

75 ⌘

2

64
1 0

0 2�2
j

3

75 , (20)

which has the determinant |J(g(✓j))| = 2�2
j . Thus, the second-stage MH ratio from (14) to231

update �j, log(�j), and  j for individual j is232

r(k)j =
[�(⇤)

j |µ(k�1)
� , �2(k�1)

� ][log(�(⇤)
j )|µ(k�1)

� , �2(k�1)
� ][�(k�1)

j ][�2(k�1)
j ][�(⇤)

j ]⇥ �2(k�1)
j

[�(k�1)
j |µ(k�1)

� , �2(k�1)
� ][log(�(k�1)

j )|µ(k�1)
� , �2(k�1)

� ][�(⇤)
j ][�2(⇤)

j ][�(k�1)
j ]⇥ �2(⇤)

j

. (21)

The scalar multiple of 2 from the Jacobian determinant cancels in the numerator and denominator233

of (21). In the second-stage algorithm, we used the MH ratio in (21) to accept our proposals234
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for �(⇤)
j , log(�(⇤)

j ), and �(⇤)
j which we sampled jointly at random (with replacement) from235

our first-stage MCMC sample. Then, we sampled the group-level model parameters236

(µ�, �2
�, µ�, and �2

�) sequentially from their full-conditional distributions using Gibbs updates237

(Appendix B).238

Alternatively, it is possible to fit the full hierarchical model using a standard MCMC239

algorithm with Gibbs updates for �j, µ�, �2
�, µ�, and �2

�. However, we would need to use240

MH updates for log(�j) and �j, and in cases where the number of individuals J is large,241

we may have to tune a prohibitively large number of proposal distributions to yield optimal242

acceptance rates in the MCMC algorithm. Nonetheless, to demonstrate that we obtain the243

same inference with TARB as compared to a single MCMC algorithm, we also fit the full244

model with a single algorithm, updating �j and log(�j) sequentially for each individual245

with Gibbs and MH updates, respectively, and the remaining model parameters as above.246

Results247

We fit our movement model to a subset of n = 1675 stork telemetry observations across248

J = 15 individuals using TARB with K = 100,000 MCMC iterations for each stage,249

computing the first stage in parallel over 8 cores, and using a single hierarchical MCMC250

algorithm with K = 100,000 MCMC iterations. The recursive approach required 2.95251

minutes and the single algorithm required 9.87 minutes; thus computation was over three252

times faster using TARB. With a larger data set of n = 155,161 locations for 15 individuals253

and K = 60,000 MCMC iterations, computation time to fit the model recursively, in parallel254

over 15 cores, was 49 minutes, compared to 88 minutes to fit the model as a single algorithm.255

Both computational approaches resulted in the same 95% credible intervals and posterior256

means for �j and log(�j) and the same population-level means µ� and µ� (Fig. 2). The257

stage-two posterior credible intervals for the �j and log(�j) for each individual j indicate258

individual variation in speed and directional persistence of migration, but the population259

is centered around µ� and µ�. First-stage credible intervals are included only to visualize260
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the relationship between stage one and stage two in Figure 2., and are not used for inference.261

The shrinkage in interval width between the first- and second-stage posteriors of �j and262

log(�j) indicates individual-level inference was informed by group-level parameters in the263

second stage, although this e↵ect was relatively minor in this example. Further, fitting264

the model to simulated data shows that both computational approaches do equally well265

recovering ‘true’ simulated parameters (Appendix C).266

Discussion267

In our application, we illustrated how TARB can be used to e�ciently fit a hierarchical268

animal movement model to telemetry data, but TARB could be implemented in many269

ecological models to improve computational e�ciency. In Table 1, we highlight several270

studies from the ecological literature in which the authors used a Bayesian hierarchical271

model (or desired to, barring computational limitations, as in Breed et al. 2009) that could272

be fit with TARB. To demonstrate the application of TARB to existing ecological models,273

we discuss two examples in detail, outlining how the models can be specified in the two-stage274

framework for faster computation.275

Harbor Seal Counts276

Cressie et al. (2009) specified a Bayesian hierarchical model to explicitly account for uncertainty277

at the data and process levels while estimating abundance of harbor seals (Phoca vitulina)278

from census data (Ver Hoef and Frost 2003) in Prince William Sound279

yij ⇠ Pois(�ij), (22)

log(�ij) ⇠ N(µij, �
2
ij), (23)

µij = ✓0,j + x
0
ij✓j, (24)

✓j ⇠ N(µ✓,⌃), (25)
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where yij is the number of hauled-out seals counted from photographs during each aerial280

survey i conducted at site j. In the observation model (22), counts arise from a Poisson281

distribution with intensity parameter �ij that represents the expected number of haul-outs282

in a given survey and location. The expected number of haul-outs (�ij) arises from a normal283

distribution with mean µij that is a function of covariates xij with variance parameters284

�2
ij for each survey and location. Site-level coe�cients ✓j arise from a population-level285

multivariate Gaussian distribution, where ⌃ is a diagonal matrix with population-level286

variance parameters along the diagonal. Thus, the hierarchical model in (22)-(25) is a287

special case of a generalized linear mixed model.288

Surveys were conducted several times per year at each site. Thus, in the first stage of289

the TARB framework, counts could be modeled independently for each site with the model290

yij ⇠ Pois(�ij), (26)

�ij ⇠ Gamma(↵, �), (27)

where a temporary gamma prior on �ij is conjugate with the data model (22) in the first291

stage so that the MCMC algorithm is unsupervised and could be parallelized over the292

sites. To complete model fitting in stage two, log-transformed first-stage samples for �ij293

would be used as proposals in the MH update for log(�ij) in a second-stage algorithm,294

[log(�ij)|.] =

h
log(�(⇤)ij )|µij, �2

ij

i h
�(k�1)
ij |↵, �

i
�(k�1)
ij

h
log(�(k�1)

ij )|µij, �2
ij

i h
�(⇤)ij |↵, �

i
�(⇤)ij

(28)

where d
dlog(�ij)

elog(�ij) = �ij. All other parameters in the second stage would be updated in295

the same manner as in a conventional algorithm.296

15



Host Plant Genetics297

Evans et al. (2012) conducted a common garden experiment to determine the e↵ects of298

cottonwood host (Populus spp.) genotype on the abundance of herbivorous mite (Aceria299

parapopuli) galls on trees. In our notation, their model was300

yimt ⇠ Pois(✓imt), (29)

log(✓imt) ⇠ N(µimt, �
2), (30)

µimt = �i + x
0
tm↵, (31)

↵ ⇠ N(µ↵,⌃↵), (32)

�i ⇠ N(0, ⌧ 2), (33)

⌧ 2 ⇠ IG(a⌧ , b⌧ ), (34)

�2 ⇠ IG(a�, b�), (35)

where yimt is the number of galls on tree i with genotype m in year t. The intensity parameter301

✓imt is a log-linear function of fixed e↵ects ↵ for year and genotype and random e↵ect of302

tree, �i. Modifying the process model to303

✓imt ⇠ Gamma(�1, �2), (36)

and using temporary priors on �1 and �2 results in an unsupervised first-stage algorithm.304

We make a similar adjustment to the second-stage MH ratio as in (28) for recursive computation.305

Conclusion306

Transformation-assisted RB is one of the most accessible approaches for fitting ecological307

models recursively with improved computational e�ciency and ease. Transformation allows308

us to extend the benefits of RB to more model specifications, and the demonstrated approach309

with change of variables can be implemented for most continuous random variables. The310
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ability to incorporate prior information into analyses is a well-known feature of Bayesian311

analysis, but it can be di�cult to determine how to do so in a robust way, and TARB is a312

natural approach for using posterior estimates from a previous study as prior information313

in subsequent studies. Finally, TARB leverages the parallel computing capacity of modern314

multi-core computers (Visser et al. 2015) to reduce the computational bottleneck created315

by large data sets and conventional sampling techniques.316

Decreased computation time is a major advantage of fitting hierarchical models using317

TARB, but reducing tuning and partitioning the data in the first stage are equally, if not318

more, advantageous. This is especially true for large hierarchical models where one might319

otherwise have to individually tune dozens or hundreds of individual-level parameters to320

achieve convergence, which would require repeatedly fitting the model. Further, because321

the first-stage algorithm is used to fit data partitions independently and the second-stage322

algorithm does not rely on the data directly, we expect additional computational gains.323

Finally, by design, TARB accommodates uneven sample sizes of partitions, because the324

first-stage posterior distributions will reflect the uncertainty associated with di↵erent sample325

sizes, thus implicitly weighting the partitions according to sample size in the second stage.326

In many cases, the first-stage algorithms of RB and TARB approaches could be implemented327

in an existing package like JAGS, Stan, or NIMBLE (Plummer 2003, Stan Development328

Team 2018, NIMBLE Development Team 2019), but the second-stage algorithm cannot329

be easily implemented in this software. However, using TARB, it may be possible to fit330

models that are not feasible using these software packages at all. While automated software331

is convenient and well-suited to a wide range of models, it cannot accommodate all model332

specifications and users do not always have control over tuning. Although software packages333

can often fit large models quickly, this may be achieved via computation in C++ rather334

than R (e.g., Stan, Stan Development Team 2018) or by making approximate inference335

(e.g., INLA, Rue et al. 2009). Recursive techniques like TARB can also be implemented in336

C++ via R and rcpp for greater computational e�ciency, and the results can be used to337
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obtain both marginal and joint inference.338

While TARB can be implemented for a broad range of hierarchical models, there are339

some cases for which TARB, as presented here using the Jacobian to perform a change340

of variables, is not ideal for model fitting. For example, hierarchical models that have341

common parameters at the data level, in addition to partition-level parameters, such as342

GLMMs with both fixed and random e↵ects, are not easily implemented using TARB.343

In this case, prior-proposal RB may be helpful (Hooten et al. 2020). Additionally, the344

Jacobian approach for computing transformed densities is well-suited for transforming345

continuous random variables, but alternate approaches must be used for discrete random346

variables. We demonstrated TARB using this technique because it serves as a good introduction347

into recursive techniques with transformation. For other random variables or applications,348

there are many useful generalizations of this approach that could be used to obtain valid349

transformations.350

Hierarchical models are powerful tools for understanding complex ecological systems,351

but the computational demands of fitting ecologically realistic models can make them352

impractical or impossible to implement. Recursive Bayesian computing techniques address353

these computational demands, and partitioning model-fitting into stages is natural in many354

ecological applications. For example, in adaptive management, RB and TARB would allow355

managers to fit first-stage individual-, year-, or site-level models as data are collected,356

and add new partitions to existing results by subsequently updating the second stage.357

Additionally, because the second-stage algorithm only requires first-stage posterior samples,358

partitions could represent data collected by di↵erent researchers during ongoing projects,359

and researchers could fit population-wide models without needing to share data (Hooten360

et al. 2020). Thus, in the current era of big data and complex modeling in ecology, TARB361

is an approachable technique that reduces the computational limitations on the ecological362

models ecologists can specify and fit.363
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Table 1: Examples of ecological studies with Bayesian hierarchical models that could
be implemented in a transformation-assisted recursive Bayesian framework.

Discipline Study
Fish & Wildlife Ecology Burton et al. 2012

Cressie et al. 2009
Breininger et al. 2019
Kuhnert et al. 2005
Monroe et al. 2017
Moore and Barlow 2011

Integrated Population Models Cleasby et al. 2017
Eacker et al. 2017
Raiho et al. 2015
Schaub et al. 2013

Animal Movement Breed et al. 2009
Eckert et al. 2008
Jonsen et al. 2006
McClintock et al. 2013
Mu↵ et al. 2019

Forestry & Plant Ecology Dietze et al. 2008
Evans et al. 2012
Hanks et al. 2011
Iijima and Otsu 2018
Vieilledent et al. 2010

Ecosystem Ecology Borsuk et al. 2001
Coll et al. 2019
Shelton et al. 2016
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Figure 1: (A) Directed acyclic diagram (DAG) for Bernoulli GLMM of cheatgrass
occurrence in Montana (1)-(4) and (B) schematic for partitioning DAG according to the
TARB framework. In (A), Y is the matrix whose columns are the data vectors yj for
the sites j = 1, ..., J . In stage 1, the data Y are partitioned by site and fit to obtain the
posterior distributions for the pj. In stage 2, samples from these posterior distributions are
used to sample logit(pj), µ, and �

2.
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Figure 2: (A) Migratory trajectories for J = 15 white storks tracked via GPS loggers
in fall 2018, with each individual represented by a di↵erent color, and (B)-(D) posterior
means (points) and 95% credible intervals for model parameters resulting from fitting our
hierarchical movement model to n = 1675 telemetry locations from J = 15 white storks
as a single hierarchical algorithm and in two stages using TARB. It is important to note
here that we show the posterior distributions for the first-stage estimates to illustrate how
some individual-level parameters borrow strength from the group-level parameters in stage
2, but in practice, the first stage posterior estimates would not be used to make inference.

28



Supporting Information: McCaslin, H.M., A.B. Feuka, and M.B. Hooten. 2020.

Hierarchical computing for hierarchical models in ecology. Methods in Ecology and Evolution.

Appendix A: Transformation-Assisted Recursive Bayesian Com-

puting Tutorial with Bernoulli GLMM

We demonstrate the implementation of transformation-assisted recursive Bayesian comput-

ing (TARB) with the following example. Pearson et al. (2018) collected occurrence data

for many species of invasive grasses at 20 grassland sites throughout Montana, including

cheatgrass (Bromus tectorum). Suppose we want to model the probability of cheatgrass oc-

currence in Montana grasslands using a Bernoulli generalized linear mixed model (GLMM)

with a single random e↵ect and no covariates. At each site, cheatgrass occurrence was

recorded at 20 randomly selected 1-m2 plots, and we wish to fit the following model to the

data,

yij ⇠ Bern(pj), i = 1, ..., 20, j = 1, ..., 20, (S1)

logit(pj) ⇠ N(µ, �2), (S2)

µ ⇠ N(µ0, �
2
0), (S3)

�2 ⇠ IG(q, r), (S4)

where j indexes sites and i indexes plots within each site. In this model, pj is the probability

of cheatgrass at site j, and logit(pj) arises from a Gaussian distribution with study-wide

parameters µ and �2 (Fig. 1). Thus, pj are “random e↵ects” because they will vary for each

site but will arise from a single underlying distribution. We use Gaussian random e↵ects,

with the logit link function to constrain pj to the proper support, and seek inference on µ.

We specify Gaussian and inverse gamma priors on µ and �2 respectively. The joint posterior
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distribution for this model is
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The full-conditional distributions for µ and �2 are
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but the full-conditional distributions for the logit(pj) are not analytically tractable and

therefore cannot be sampled using Gibbs updates in an MCMC algorithm.

We use TARB to fit this model so that we can specify temporary first-stage priors for

the pj that are conjugate with the data model and therefore result in analytically tractable

full-conditional distributions to avoid having to tune the updates for the logit(pj). Letting

✓j = logit(pj), we specify the transformation g(✓j) ⌘ logit�1(✓j) so that

g(✓j) = g(logit(pj)) = logit�1(logit(pj)) = pj. (S8)

Next, we specify temporary first-stage Je↵erys priors pj ⇠ [pj] ⌘ Beta(↵ = 0.5, � = 0.5).

With this prior, the first-stage full-conditional distribution for pj for a single site j,

[pj|yj] /
✓ NY

i=1

[yij|pj]
◆
[pj], (S9)

/
✓ NY

i=1

p
yij
j (1� pj)

1�yij
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j (1� pj)

��1, (S10)

/ Beta

✓✓ NX

i=1

yij

◆
+ ↵,

✓ NX

i=1

1� yij

◆
+ �

◆
, (S11)

is analytically tractable. Further, because pj is the only parameter in the first-stage, this
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full-conditional distribution is equivalent to the first-stage posterior distribution for this

site. Thus, we can sample from this first-stage posterior distribution without needing to use

MCMC at all. Instead, we can use the following R code to generate a sample of size K =

100,000 from the posterior distribution for a single site:

s1_post <- rbeta(10000, sum(y)+alpha, sum(1-y)+beta)

This results in the first-stage posterior distribution [pj|yj], so to use these posterior

samples as MH proposals in the second stage of the TARB procedure, we must modify the

stage two MH ratio so that the proposal is on the original variable that appears in the process

model, namely logit(pj). Because ✓j = logit(pj) is a scalar for a single site j, the Jacobian

matrix J(g(✓j)) simplifies to the scalar derivative of g with respect to ✓j,

J(g(✓j)) ⌘
d

d✓j
g(✓j). (S12)

The derivative d
d✓

e✓

e✓+1 = e✓

(e✓+1)2 and e
log

pj
1�pj = pj

1�pj
, so it follows that

d

d✓j
g(✓j) =

d

d✓j

✓
e✓j

e✓j + 1

◆
, (S13)

=
pj

(1� pj)(
pj

1�pj
+ 1)2

, (S14)

= pj(1� pj). (S15)

Therefore, the MH ratio to update the logit(pj) in the second stage of model fitting is

r(k)j =
[yj|logit(p

(⇤)
j )][logit(p(⇤)j )|µ(k�1), �2(k�1)][logit(p(k�1)

j )|yj]

[yj|logit(p
(k�1)
j )][logit(p(k�1)

j )|µ(k�1), �2(k�1)][logit(p(⇤)j )|yj]
, (S16)

=
[yj|logit(p

(⇤)
j )][logit(p(⇤)j )|µ(k�1), �2(k�1)][yj|logit(p

(k�1)
j )][logit(p(k�1)

j )]

[yj|logit(p
(k�1)
j )][logit(p(k�1)

j )|µ(k�1), �2(k�1)][yj|logit(p
(⇤)
j )][logit(p(⇤)j )]

, (S17)

=
[logit(p(⇤)j )|µ(k�1), �2(k�1)][p(k�1)

j ]⇥ p(k�1)
j (1� p(k�1)

j )

[logit(p(k�1)
j )|µ(k�1), �2(k�1)][p(⇤)j ]⇥ p(⇤)j (1� p(⇤)j )

. (S18)
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The R code for this update for a single site j is:

# draw from first stage posterior #

idx <- sample(1:s1_length,1,replace=T)

p.star <- s1_post[idx]

logit.p.star <- logit(p.star)

# MH ratio #

mh1 <- dnorm(logit.p.star,mu,sqrt(s2),log=T) +

dbeta(p[j],alpha,beta,log=T) +

log(p[j]*(1-p[j]))

mh2 <- dnorm(logit.p[j],mu,sqrt(s2),log=T) +

dbeta(p.star,alpha,beta,log=T) +

log(p.star*(1-p.star))

# accept or reject #

mh <- exp(mh1-mh2)

if(mh > runif(1)){

p[j] <- p.star

logit.p[j] <- logit.p.star

accept[j] <- accept[j] + 1

}

To complete model fitting, we update µ and �2 by sampling from their full-conditional

distributions with Gibbs updates:

## sigma update ##

tmp_r <- 1/(sum((logit.p-mu)^2)/2 + 1/r)

tmp_q <- J/2 + q

s2 <- 1/rgamma(1,shape=tmp_q,scale=tmp_r)

## mu update ##

tmp_s2 <- 1/(J/s2 + 1/s2_0)

tmp_mu <- tmp_s2*(sum(logit.p)/s2 + mu_0/s2_0)

mu <- rnorm(1,tmp_mu, sqrt(tmp_s2))

We can now make inference from the stage two output, as shown in Figure S1. Note that

the output from stage one is only used to sample proposals for the stage two MH ratio, and

should not be used to make inference. All code and data to fit this model to the cheatgrass

data are attached as supplemental files.
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Figure S1: Posterior densities for logit(pj) at j = 1, ..., J grassland sites in Montana, USA
(green), where pj is the probability of cheatgrass (Bromus tectorum) occurrence at site j,
and 80 realizations of the process model N(µ, �2) giving rise to the logit(pj) (gray). Also
shown is the posterior density for group-level parameter µ (black), describing the central
tendency of this distribution giving rise to the logit(pj).

5



Appendix B: Full movement model & prior specifications

Our full model for the white stork telemetry data (Cheng et al. 2019, Fiedler et al. 2019)

was specified as

sj(ti) ⇠ N

✓
(sj(ti�1)� �j

✓
sin(�j)

cos(�j)

◆
dti, �

2
jdtiI

◆
, (S19)

�j ⇠ N(µ�, �
2
�), (S20)

log(�j) ⇠ N(µ�, �
2
�), (S21)

�j ⇠ Unif(u1, u2), (S22)

µ� ⇠ N(µ1, �
2
1), (S23)

�2
� ⇠ IG(q1, r1), (S24)

µ� ⇠ N(µ2, �
2
2), (S25)

�2
� ⇠ IG(q2, r2). (S26)

where �j and log(�j) are Gaussian random e↵ects, but individual variability in �j does not

arise from a population-level distribution. We used MCMC to sample from the joint posterior

distribution

[�, log(�),�, µ�, µ�, �
2
�|S] /

✓ JY

j=1

✓ njY

i=2

[sj(ti)|�j, log(�j),�j]

◆
[�j|µ�, �

2
�][log(�j)|µ�, �

2
�][�j|u1, u2]

◆

⇥ [µ�][�
2
�][µ�][�

2
�],

(S27)

in two stages.

In the first stage of the transformation-assisted recursive Bayesian (TARB) procedure

to fit the stork migration movement model, we specified individual-level models using the
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temporary prior [�j, �2
j ] = [�j][�2

j ] where

�j ⇠ [�j] ⌘ N(µ0 = 0, �2
0 = 10), (S28)

�2
j ⇠ [�2

j ] ⌘ IG(q0 = 0.001, r0 = 1000), (S29)

for j = 1, ..., J , allowing us to update �j and �2
j by sampling from the conjugate full-

conditional distributions

[�j|·] = N

 ✓
(nj � 1)dt

�2
j

+
1

�2
0

◆�1✓�
Pnj

i=2(s(ti)� s(ti�1))0
� sin(�j)
cos(�j)

�

�2
j

+
µ0

�2
0

◆
,

✓
(nj � 1)dt

�2
j

+
1

�2
0

◆�1
!
,

(S30)

[�2
j |·] = IG

 
(nj � 1) + q0,

✓(s(ti)� s(ti�1) + �2

� sin(�j)
cos(�j)

�
dt)0(s(ti)� s(ti�1) + �2

� sin(�j)
cos(�j)

�
dt)

2dt
+

1

r0

◆�1
!
.

(S31)

We updated �j using a Metropolis-Hastings (MH) update with acceptance ratio

r� =
[sj|�(k�1), �2(k�1)

2 ,�(⇤)]

[sj|�(k�1), �2(k�1)
2 ,�(k�1)]

, (S32)

where the proposal and prior terms cancel in the numerator and denominator because we

used the proposal distribution �(⇤)
j ⇠ N(�(k�1)

j , �2
tune) and a uniform prior [�j] ⌘ U(0, ⇡) on

�j.

In the second-stage, we updated �j, �2
j , and �j using a Metropolis-Hastings update

described in the main text, and then sampled the remaining model parameters (µ�, �2
�, µ�, �2

�)
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sequentially using Gibbs updates from their conjugate full-conditional distributions

[µ�|·] / N

 ✓
J

�2
�

+
1

�2
1

◆�1✓PJ
j=1 �j

�2
�

+
µ1

�2
1

◆
,

✓
J

�2
�

+
1

�2
1

◆�1
!
, (S33)

[�2
�|·] / IG

 
J

2
+ q1,

✓PJ
j=1(�j � µ�)2

2
+

1

r1

◆�1
!
, (S34)

[µ�|·] / N

 ✓
J

�2
�

+
1

�2
2

◆�1✓PJ
j=1 log(�j)

�2
�

+
µ2

�2
2

◆
,

✓
J

�2
�

+
1

�2
2

◆�1
!
, (S35)

[�2
�|·] / IG

 
J

2
+ q2,

✓PJ
j=1(log(�j)� µ�)2

2
+

1

r2

◆�1
!
, (S36)

with the prior distributions

µ� ⇠ N(µ1 = 0, �2
1 = 100), (S37)

�2
� ⇠ IG(q1 = 0.001, r1 = 1000), (S38)

µ� ⇠ N(µ2 = 0, �2
2 = 100), (S39)

which were also the priors used when fitting the model in a single MCMC algorithm.
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Appendix C: Analysis of Simulated Data

To demonstrate transformation-assisted recursive Bayesian computing (TARB), we simu-

lated data for 20 individuals arising from the movement process described by the model

in (S18)-(S25). We specified ‘true’ parameter distributions �j ⇠ N(1.2, 0.2) and log(�j) ⇠

N(�1.6, 0.1), and simulated a trajectory of 100 observations Sj with constant dt = 0.005 for

each individual j for j = 1, ..., 20 (Fig. S2).

Figure S2: Simulated trajectories for 20 individuals with 100 observations each.
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We fit the model to the simulated data both with our two-stage approach, specifying a

temporary prior on �2
j in the first stage as we did when modeling the stork data, and in a

single MCMC algorithm. We fit the model to simulated data using the following priors for

both algorithms.

µ� ⇠ N(µ1 = 0, �2
1 = 10), (S40)

�2
� ⇠ IG(q1 = 0.001, r1 = 1000), (S41)

µ� ⇠ N(µ2 = 0, �2
2 = 100), (S42)

�2
� ⇠ IG(q2 = 0.001, r2 = 1000). (S43)

Additionally, for the first stage of the recursive Bayes procedure, we specified the following

temporary priors for �j and �2
j

�j ⇠ N(µ0 = 0, �2
0 = 10), (S44)

�2
j ⇠ IG(q0 = 0.01, r0 = 100). (S45)

The two-stage approach resulted in the same inference as the full hierarchical algorithm

(Fig. S3). Additionally, both the second-stage algorithm and the single hierarchical al-

gorithm recover the �j, log(�j), and �j values used to simulate the data for nearly all

individuals.

10



Figure S3: Marginal posterior means (points) and 95% credible intervals (lines) for the
individual-level �j and log(�j) and the population-level means µ� and µ�. Triangles repre-
sent ‘true’ parameter values used to simulate data. The purple estimates (left in each group)
correspond to results from the single, hierarchical algorithm, the blue estimates (center in
each group) correspond to the individual-level results from the first stage of the two-stage
approach, and the green estimates (right in each cluster) correspond to the second-stage re-
sults. The estimates to the right of the dashed line are estimates for population-level means
from the full hierarchical algorithm (purple) and the two-stage approach (green).

11



References

Cheng, Y., W. Fiedler, M. Wikelski, and A. Flack. 2019. “Closer-to-home” strategy benefits

juvenile survival in a long-distance migratory bird. Ecology and Evolution 9: 8945–8952.

doi: 10.1002/ece3.5395.
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