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Abstract. We consider the problem of model selection for geospatial data. Spatial
correlation is often ignored in the selection of explanatory variables, and this can influence
model selection results. For example, the importance of particular explanatory variables
may not be apparent when spatial correlation is ignored. To address this problem, we
consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We
offer a heuristic derivation of the AIC in this context and provide simulation results that
show that using AIC for a geostatistical model is superior to the often-used traditional
approach of ignoring spatial correlation in the selection of explanatory variables. These
ideas are further demonstrated via a model for lizard abundance. We also apply the principle
of minimum description length (MDL) to variable selection for the geostatistical model.
The effect of sampling design on the selection of explanatory covariates is also explored.
R software to implement the geostatistical model selection methods described in this paper
is available in the Supplement.
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ed whiptail lizard abundance.

INTRODUCTION

Ecologists and scientists in other fields typically con-
sider a number of plausible models in statistical ap-
plications. Formal consideration of model selection in
ecological applications has dramatically increased in
recent years, perhaps in part due to the publication of
the book by Burnham and Anderson (1998, 2002). Con-
currently, the wide availability of inexpensive global
positioning systems and other advances in technology
have allowed for the collection of vast quantities of
data with georeferenced sample locations. As a result,
models for spatially correlated data are becoming in-
creasingly important. We consider these two problems
of spatial modeling and model selection together. The
importance of accounting for spatial correlation has
been discussed in other contexts (Cressie 1993), but
the effect of spatial correlation on model selection has
not been fully explored.

Our general philosophy for choosing a model is that
we would like to incorporate information that we be-
lieve influences the response variable while acknowl-
edging that we do not know everything associated with
the response. These unknowns could be quantities that
we did not (or could not) measure, complex variable
interactions, heterogeneity, etc. Thus, an error process
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is often included in the model that ‘‘accounts’’ for these
unknowns. For example, we may suspect that the abun-
dance of a certain species is dependent on the avail-
ability of a certain type of vegetation and the predator-
to-prey ratio. But we must acknowledge that other var-
iables are likely to play an important role, such as the
abundance of fresh water or the prevalence of a certain
disease. Thus, the model that we construct must ac-
count for these unknown influences. This is the main
role of any error term in any modeling exercise. The
problem becomes more complicated when we consider
that there may be competing models each using a dif-
ferent subset of known variables. For example, perhaps
there are two types of vegetation that the species will
eat. Is either vegetation species a better predictor of
abundance or is some combination of the two the best
predictor? In other words, which subset of explanatory
variables and error structure together provides the best
model? To attempt to answer this question, we adopt
a geostatistical model (Cressie 1993) that can be used
to predict a response at unobserved locations. This ap-
proach, also referred to as kriging, involves the fitting
of an autocorrelation function that describes the rela-
tionship between observations based on the distance
between the observations. This method allows for any
number of the explanatory variables observed at the
sample locations to be included in the model to improve
the overall predictions.

Typically, spatial correlation is ignored in the selec-
tion of explanatory variables. Ignoring the autocorre-
lation structure in the data can influence model selec-
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tion results. For example, the importance of particular
explanatory variables may not be apparent when spatial
correlation is ignored. To address this problem, we con-
sider the Akaike Information Criterion (AIC) as applied
to a geostatistical model. We provide simulation results
that show that using AIC for a geostatistical model is
superior to the standard approach of ignoring spatial
correlation in the selection of explanatory variables.
We also consider the impact of the sampling pattern
on the model selection. We further demonstrate these
ideas via a model for the abundance of the orange-
throated whiptail lizard found in southern California.
The principle of minimum description length (MDL)
applied to the variable selection problem is also in-
vestigated and simulation results are provided for com-
parison.

THE GEOSTATISTICAL MODEL

Suppose we are interested in the abundance of the
orange-throated whiptail lizard in a specific region in
southern California (analysis results of this data set are
given in Example). Assume that we have collected in-
formation at each of 150 sites spread across the area
of interest. Our data set consists of the average number
of lizards observed per day, the percentage of vege-
tation coverage, the abundance of ants (a primary food
source), and a georeference for each site, such as lat-
itude and longitude. It is not feasible to collect data at
all possible locations, thus we are assuming that these
150 sites are representative of the entire area of interest.
Let Z(si) denote the average abundance of lizards at
site i where i 5 1, . . . , 150. Thus the vector Z 5 (Z(s1),
. . . , Z(s150))9 is a partial realization of the continuous
random field over this finite area, D. In other words,
we are assuming that at any given site s within the
domain D, the average abundance of the lizards is a
function of a specific set of variables that can be ob-
served along with some random noise.

A model for the continuous random field at any lo-
cation s ∈ D is given by

Z(s) 5 b 1 b X (s) 1 · · · 1 b X (s) 1 d(s)0 1 1 p21 p21

5 X9(s)b 1 d(s) (1)

where X(s) 5 (1, X1(s), . . . , Xp21(s))9 is a p-vector
consisting of the constant 1 and p 2 1 explanatory
variables observed at location s, b 5 (b0, . . . , bp21)9
is a p-vector of the unknown model coefficients, and
d(s) is the unobserved ‘‘regression’’ error at location
s. For example, X1(s) and X2(s) may be the percentage
of vegetation coverage and the abundance of ants at
location s, respectively. For computational ease, we
will assume that the error process d(s) is a stationary,
isotropic Gaussian process with mean zero and co-
variance function Cov(d(si), d(sj)) 5 s2ru(\si 2 sj \ ).
Here, s2 is the variance of the process, ru(\ · \) is a
family of autocorrelation functions with a parameter

vector u of length k, and \ · \ denotes the Euclidean
distance between two sites. Thus, we assume that the
correlation between any two sites is only a function of
the distance between them. In deciding among the co-
variates, we must also choose an appropriate autocor-
relation function. As we will demonstrate, these two
issues are inextricably linked.

The autocorrelation function must satisfy certain
mathematical conditions in order to be valid. This re-
stricts our selection to one of a number of standard
autocorrelation families. Most readers should be fa-
miliar with the independent error process associated
with multilinear regression. In this case, one is assum-
ing that the errors are identically distributed and in-
dependent of one another and of location. For geo-
spatial data, it is reasonable to assume that observations
that are nearby will have similar response values, so
we seek to model this relationship via the autocorre-
lation function. A rich family of autocorrelation func-
tions is the Matern family (Handcock and Stein 1993,
Stein 1999). The Matern autocorrelation function has
the general form

u22dÏu 2dÏu1 2 2
r (d) 5 Ku u2u 21 1 2 1 222 G(u ) u u2 1 1

u . 0 u . 0 (2)1 2

where (·) is the modified Bessel function of orderKu2

u2 (Abramowitz and Stegun 1965). The ‘‘range’’ pa-
rameter u1 controls the rate of decay of the correlation
between observations as distance increases. Large val-
ues of u1 indicate that sites that are relatively far from
one another are moderately (positively) correlated. The
‘‘smoothness’’ parameter u2 can be described as con-
trolling behavior of the autocorrelation function for
observations that are separated by small distances. The
Matern class includes the exponential autocorrelation
function when u2 5 0.5 and the Gaussian autocorre-
lation function as a limiting case when u2 → `. The
Matern class is very flexible, being able to strike a
balance between these two extremes, thus making it
well suited for a variety of applications. Figs. 1 and 2
illustrate the flexibility of the Matern autocorrelation
function. Notice that, for small distances, the correla-
tion between sites is large and decreases as distance
increases.

The autocorrelation function given in Eq. 2 can be
further adapted to include the possibility of measure-
ment error, called ‘‘nugget’’ in many spatial contexts.
A mixture model that incorporates measurement error
in these spatial models is considered in Thompson
(2001). To minimize the complexity of the current dis-
cussion, we have chosen not to include a nugget effect
in our simulations or analysis of the lizard data ex-
ample. It should be noted that selection of the form of
the autocorrelation function can be easily incorporated
into the model selection process. For example, one
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FIG. 1. Matern autocorrelation function for
several parameter values. The horizontal axis is
the distance between points, and the vertical
axis is the correlation between two points at a
given distance. We used a fixed range parameter,
u1 5 2.00, with various smoothness parameter
values, u2. Note that the exponential autocor-
relation is equivalent to the Matern autocorre-
lation function with u2 5 0.50 and that the
Gaussian autocorrelation function corresponds
to the limiting case such that u2 → `.

FIG. 2. Matern autocorrelation function for
smoothness parameter u2 5 1.00 and various
range parameter values, u1.

could assume that the autocorrelation function is Ma-
tern but allow the selection process to determine wheth-
er or not a nugget should be included.

Estimation

The model in Eq. 1 is often referred to as a geo-
statistical model or a universal kriging model. For a
particular subset of explanatory variables and a struc-
ture for the error process, we are now tasked with es-
timating the parameters b, s2, and u. Estimation of the
parameters of this model can proceed using one of sev-
eral likelihood-based approaches (Haining 1990, Cres-
sie 1993, Smith 2000) or a Bayesian approach (Hand-
cock and Stein 1993, Thompson 2001). Here, we con-
sider the former. Both approaches can be computa-
tionally challenging to implement for large sample
sizes.

Using the assumption that the error process is Gauss-
ian, the log-likelihood of the parameters in Eq. 1, (u,
b, s2), based on the observed data, Z, is given by

2,(u, b, s ; Z)

1 1
2 21} 2 logzs Vz 2 (Z 2 Xb)9V (Z 2 Xb)

22 2s

where V 5 [ru(\si 2 sj \)] represents the matrix of

correlations between all pairs of observations, i, j 5
1, . . . , n. By concentrating out b and s2, the profile
likelihood can be easily computed, which can often
accelerate optimization of the likelihood. That is, by
maximizing the likelihood with respect to b and s2,
we obtain 5 (u) 5 (X9V21X)21X9V21Z and 2 5b̂ b̂ ŝ

2(u) 5 (Z 2 X )9V21(Z 2 X )/n. The resulting logŝ b̂ b̂
profile likelihood is

1 n n
2 2, (u; b̂, ŝ , Z) } 2 logzVz 2 log(ŝ ) 2 . (3)profile 2 2 2

Maximizing Eq. 3 produces the maximum likelihood
estimates for the parameters of the spatial autocorre-
lation function, u.

An alternative approach for parameter estimation is
the restricted maximum likelihood (REML) approach
of Patterson and Thompson (1971). Cressie (1993:93)
supports the use of REML over maximum likelihood
as a method of estimation when the number of ex-
planatory variables is large. For model selection, most
procedures involve a component consisting of the max-
imized likelihood function. Since REML does not max-
imize the likelihood, we do not consider REML here
further. However, once a model has been selected, the
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researcher is free to re-estimate the model parameters
using, for example, REML for parameter estimation.

MODEL SELECTION FOR GEOSTATISTICAL MODELS

Model selection is a critical ingredient in nearly any
model building exercise. Depending on one’s philo-
sophical bent, which is often driven by the modeling
objective, there are a myriad of procedures for selecting
an optimal model subject to a particular criterion. The
introductions in the books by McQuarrie and Tsai
(1998) and Burnham and Anderson (2002) give ex-
cellent accounts of the various philosophies underpin-
ning model selection. It is important, however, to adopt
a model selection paradigm that reflects the ultimate
objective of the modeling process. For example, an
explanatory model that establishes useful relationships
between explanatory and response variables may not
necessarily perform as well as a predictive model and
vice versa. We first discuss development of the Akaike
Information Criterion (AIC) for spatial models of the
form in Eq. 1 followed by a discussion of spatial model
fitting. The third subsection contains a brief discussion
of the concept of minimal description length (MDL)
and further remarks on model selection issues. (Ap-
pendix B gives the formulas for all three model selec-
tion procedures described here.)

Returning to our working example of the whiptail
lizard, the current question at hand is which model
should be selected. Should we include both of the po-
tential explanatory variables, just one, or perhaps nei-
ther? What is required is a quantitative measure of how
closely each of the candidate models coincides with
the true model. We may also wish to penalize less par-
simonious models. We suggest that AIC, extended to
spatial models, accomplishes these goals.

AIC for spatial models

There are often two points of view taken in model
selection. The first presumes that there exists a true
finite-dimensional model from which the data were
generated. For example, one might hypothesize the true
model to be linear in which there exists an explicit
linear relationship between the explanatory variables
and the response. In this case, the key modeling ob-
jective is to identify the correct set of covariates that
comprise the model. The second modeling perspective,
which seems particularly well suited for ecological
data, is that the ‘‘truth’’ and, consequently, the under-
lying true model, is essentially infinite dimensional and
we have no hope of identifying all the requisite factors
that go into the process under study. In other words,
reality cannot be expressed as a simple, ‘‘true model’’
because, as Burnham and Anderson (1998) observe,
‘‘[Ecological] systems are complex, with many small
effects, interactions, individual heterogeneity, and in-
dividual and environmental covariates (being mostly
unknown to us).’’ Thus, the goal is to find the best

approximating finite dimensional model to this infinite-
dimensional problem.

Under the first scenario, consistency should be a min-
imum requirement of a model selection procedure. That
is, as more data are acquired, the model selection pro-
cedure should ultimately choose the correct model with
probability one. In the second situation, when the true
model is infinite dimensional, a model selection pro-
cedure ought to choose a finite-dimensional model that
is closest to the true model in some sense. The Akaike
Information criterion (Akaike 1973) is one procedure
that is designed to achieve this second goal.

AIC was developed as an estimator of the Kullback-
Leibler information. Roughly speaking, AIC is a mea-
sure of the loss of information incurred by fitting an
incorrect model to the data. To describe the main idea
behind AIC, let Z be an n-dimensional random vector
with true probability density function fT and consider
a family { f (· ; c), c ∈ C} of candidate probability
density functions. The Kullback-Leibler information
between f (· ; c) and fT is defined as

f (z; c)
I(c) 5 22 log f (z) dz. (4)E T5 6f (z)T

Applying Jensen’s inequality, we see that

f (z; c)
I(c) 5 22 log f (z) dzE T5 6f (z)T

f (z; c)
$ 22 log f (z) dzE T5 6f (z)T

5 22 log f (z; c) dz 5 0E5 6
with equality holding if and only if f (z; c) 5 fT(z)
almost everywhere with respect to the true model fT.

By treating I(c) as the information loss associated
with f (· ; c), the idea is to minimize I(c) over all can-
didate models c ∈ C. Unfortunately, this is not pos-
sible without knowing fT, thus we need to adopt a strat-
egy that is not dependent on the unknown density fT.

First rewrite the Kullback-Leibler information in the
following manner:

f (z; c)
I(c) 5 22 log f (z) dzE T5 6f (z)T

5 22 log{ f (z; c)} f (z) dzE T

1 2 log{ f (z)} f (z) dzE T T

5 D(c) 1 2 log{ f (z)} f (z) dz. (5)E T T

The first term, defined as the Kullback-Leibler index,
can be written as D(c) 5 ET{22 log LZ(c)} where the
expectation is taken with respect to the true density
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and LZ(c) is the likelihood based on the candidate mod-
el corresponding to using the data Z. Note that the
second term in Eq. 5 is a constant and plays no role
in the minimization of I(c). While it is generally not
possible to compute either D(c) or D( ), where isĉ ĉ
the maximum likelihood estimate of c, we instead
strive to find a model that minimizes an unbiased es-
timate of Ec(D( )), where Ec represents the expectationĉ
operator relative to the candidate density f (· ; c).

A heuristic derivation of the AIC statistic in the spa-
tial model setup of Eq. 1 can be found in AIC deri-
vation. The quantity

p 1 k 1 1
AIC 5 22 log{L (ĉ)} 1 2n (6)c Z n 2 p 2 k 2 2

is an approximately unbiased estimate of the expected
Kullback-Leibler information evaluated at , whereĉ
there are p explanatory variables, including an intercept
term, k is the number of parameters associated with the
autocorrelation function, and n is the number of ob-
served sites. This version is known as the corrected
AIC (AICc) which includes a measure of the quality of
fit of the model (first term) and a penalty factor for the
introduction of additional parameters into the model
(second term). The AIC statistic for this model is

AIC 5 22 log{L (ĉ)} 1 2(p 1 k 1 1).Z

For large n, the penalty factors, 2n( p 1 k 1 1)/(n 2
p 2 k 2 2) and 2( p 1 k 1 1) are nearly equivalent.
The AICc statistic has a more severe penalty for larger-
order models that helps counterbalance the tendency
of AIC to overfit models to data.

The principle of AIC is to select a combination of
explanatory variables and models for the autocorrela-
tion function that minimize either AICc or AIC. It is
worth remarking that, in many classical situations, such
as linear regression or time-series modeling, AICc and
AIC are not consistent order selection procedures. In
other words, as the sample size increases there is a
positive probability that a model selected by AICc or
AIC does not correspond to the true model. Neverthe-
less, these statistics should produce good estimates of
the Kullback-Leibler information for which they were
formulated.

Spatial model fitting

Traditionally, the fitting of the model in Eq. 1 is
accomplished in two steps (see, for example, Venables
and Ripley [1999:439–444]). In the first step, explan-
atory variables for modeling the large-scale variation
are chosen via a model selection technique such as
Akaike’s Information corrected criterion (AICc; Sugi-
ura 1978, Hurvich and Tsai 1989). Second, the resid-
uals from the model are examined for spatial correla-
tion and a suitable family of correlations is chosen. The
estimates of the parameters in the trend surface are
updated using generalized least squares followed by

maximum likelihood estimation of the parameters of
the covariance function using the residuals. This two-
step estimation process is repeated until some suitable
convergence criterion is attained. Since a correlation
function is not identified in the selection of the ex-
planatory variables in step 1, AICc is implemented un-
der the working assumption of independence of the
residuals (Haining 1990, Cressie 1993).

A limitation of the model selection procedure de-
scribed above is that it ignores potential confounding
between explanatory variables and the correlation in
the spatial noise process {d(s)}. Although it is extreme-
ly convenient to select explanatory variables for the
model before fitting a covariance function to the re-
siduals, it is generally not a good idea to separate these
two steps. The inclusion of one or more important ex-
planatory variables may remove or reduce the corre-
lation structure of the residuals from the model. For
example, Ver Hoef et al. (2001) demonstrate the sim-
ilarities between a model with independent errors and
a linearly decreasing mean and a model with correlated
errors and a constant mean. Alternatively, ignoring the
autocorrelation structure of the error process may mask
explanatory variables that are very important in mod-
eling the mean function. The additional noise in the
data can overwhelm the information in the data, re-
sulting in the identification of fewer important explan-
atory variables. An example of this behavior will be
explored in Simulation.

Model selection techniques for spatial models need
to include the correlation structure in determining the
best set of predictors. By computing the AICc statistic
described in Eq. 6 for all possible sets of explanatory
variables and autocorrelation functions, one can find a
single ‘‘best’’ model or a set of models which fit the
data well. This method attempts to strike a balance
between the competing forces of large scale variability,
as modeled via the explanatory variables, and small
scale variability, as modeled through the correlation in
the residuals.

Other considerations

The AICc statistic in Eq. 6 for the geostatistical mod-
el in Eq. 1 required that the true model was a member
of the family of candidate models, all of which were
finite dimensional. However, in many applications
(McQuarrie and Tsai 1998, Burnham and Anderson
2002), the AICc selection procedure enjoys additional
optimality properties regarding the choice of a finite-
dimensional model when the true model is in fact in-
finite dimensional. This includes the notion of effi-
ciency for prediction in time series models and optimal
signal-to-noise ratios for linear models (McQuarrie and
Tsai 1998).

AIC and other information-based criteria such as
BIC and HQ (Kass and Raftery 1995, McQuarrie and
Tsai 1998) have an objective function consisting of two
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pieces. The first is related to 22(log-likelihood), which
is a measure of the quality of fit of a model, and the
second is a penalty factor for the introduction of ad-
ditional parameters into the model. The principle of
minimum description length (MDL), an idea developed
by Rissanan in the 1980s, also contains two similar
pieces, but is motivated by different ideas. MDL at-
tempts to achieve maximum data compression by the
fitted model.

The idea behind MDL is to decompose the code
length of the ‘‘data’’ into two pieces (see the survey
paper by Lee [2001] for more details). Roughly speak-
ing, the code length of the ‘‘data’’ is the amount of
memory required to store the data. Typically, the code
length of the data can be decomposed into the sum of
the code length of the fitted model and the code length
of the data given the fitted model, i.e.,

L(data) 5 L(fitted model)

1 L(data given fitted model).

Here, L(fitted model) might be interpreted as the code
length of the model parameters and L(data given fitted
model) as the code length of the residuals from the
fitted model. It follows that a more complex model is
chosen provided there has been a compensating de-
crease in the code length of the residuals. According
to the MDL principle, the best model is the one pro-
ducing the shortest code length for the data. The at-
traction of this procedure is that the data is being com-
pressed in the most efficient manner possible and the
notion of a true model at any level is not required.

The code length of the fitted model based on the
MLE, , can be approximated by L(fitted model) . 1/ĉ
2( p 1 k 1 1)log2n. The code length of the data given
the model based on is approximated by log2L( ).ĉ ĉ
Adding these terms together and rescaling, the mini-
mum description length is defined by

1
MDL 5 {22 log[L (ĉ)] 1 log(n)(p 1 k 1 1)}.Z2

The only difference between the value of AICc (using
the spatial AICc method) and 23MDL is the magnitude
of the penalty term coefficient. For AICc, the leading
coefficient is of order 2 compared to log(n) for
23MDL. For sample sizes greater than eight, the pen-
alty for 23MDL is larger. For example, when n 5 100,
p 5 4, and k 5 2 the penalty coefficients are 2 and
4.60, respectively. MDL generally selects more par-
simonious models, i.e., models with fewer explanatory
variables.

Bayesian model averaging is an alternative approach
to model selection and prediction (Hoeting et al. 1999).
The idea of Bayesian model averaging is to average
across several models instead of selecting one model.
In computing the average, each model is weighted by
its posterior model probability, a measure of the degree

of model support in the data. Empirical and theoretical
results over a broad range of model classes indicate
that Bayesian model averaging can provide improved
out-of-sample predictive performance as compared to
single models. For the geostatistical model in Eq. 1,
Thompson (2001) showed that Bayesian model aver-
aging can offer improved predictive performance as
compared to the single models that are selected when
spatial correlation is ignored. However, the gains are
modest in the simulations that were explored.

SIMULATION

To explore the impact of ignoring spatial correlation
on model selection, we carried out a simulation com-
paring the explanatory variables selected using stan-
dard independent AIC model selection which ignores
spatial correlation to those selected using the spatial
AIC approach and the MDL approach. In addition to
comparing the impact of accounting for spatial corre-
lation in the selection of a set of explanatory variables,
we also explored the impact of sampling pattern on the
selection of explanatory variables. We considered five
sampling patterns shown in Fig. 3; highly clustered,
lightly clustered, random, regular, and a grid design.
Finally, we conducted some simulation studies to char-
acterize the strength of the predictive ability when spa-
tial correlation is included in the selection process of
explanatory variables.

We simulated five possible explanatory variables: X1,
X2, X3, X4, X5. Each explanatory variable was inde-
pendently generated from a standardized Student’s t
distribution with 12 degrees of freedom, Xi ;

for i 5 1, . . . , 5. The explanatory variablesÏ12/10(t )12

were fixed and identical for all simulations.
For a given sampling pattern of size n 5 100, the

data were simulated from the model

Z 5 2 1 0.75X 1 0.50X 1 0.25X 1 d1 2 3 (7)

where d is a Gaussian random field with mean zero,
s2 5 50, and autocorrelation Matern with parameters
u1 5 4 and u2 5 1. (Results for other values of the
Matern parameters are also provided.) For each sam-
pling pattern, 500–1000 replicates were simulated with
a new Gaussian random field generated for each rep-
lication. The largest signal of Eq. 7 is associated with
X1 which is three times the ‘‘strength’’ of X3. Thus, we
expect that the majority of models selected should at
least include X1.

With five possible explanatory variables, there are
25 5 32 possible combinations of explanatory vari-
ables, including the intercept-only model. For each re-
alization, we computed the AICc statistic for all 32
possible models. For the traditional method, the AICc

statistic was calculated using Eq. 6 with k 5 0. We call
this the independent AICc approach. The spatial AICc

results were calculated using Eq. 6 as well with k 5
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FIG. 3. Five sampling patterns.

TABLE 1. Model selection results for the random pattern.

Variables in model
Spatial
AICc

Independent
AICc MDL

X1, X2, X3 56.0 2.4 40.4
X1, X2, X3, X5 14.4 0.2 4.2
X1, X2, X3, X4 10.8 0.2 0.8
X1, X2 10.2 8.4 46.4
Intercept only 0.0 26.8 0.0
X1 0.4 14.2 1.2
X2 0.0 13.8 0.2

Notes: Spatial and independent AICc (corrected Akaike In-
formation Criterion) and MDL (minimum description length)
report the percentage of simulations in which each model was
selected. Of the 32 possible models, the results given here
include only those with 10% or more support from at least
one model selection method.

2. Further details on the simulation set-up and addi-
tional simulation results are given in Thompson (2001).

General simulation results

Table 1 compares the models selected by the spatial
AICc and independent AICc approaches. When inde-
pendence is assumed, the AICc statistic selects the true
model (X1, X2, X3) only 12 out of 500 simulations
(2.4%) while the intercept-only model is selected in
134 out of 500 simulations (26.8%). Over all 500 sim-
ulations, the AICc independence approach selected
models that included both explanatory variables X1 and
X2 only 15.8% of the time. These results provide a
vivid example of the drawbacks of the standard model
selection approach for spatially correlated data. In total,
the first explanatory variable is in 40.2% of the selected
models, and the second explanatory variable is includ-
ed in 35.4% of the models.

Spatial AICc has superior model selection perfor-
mance as compared to the independent AICc method.
The true model is selected in 56.0% of the simulations
(Table 1). When the true model is not selected, this
method tends to overestimate the number of parameters

in the model, selecting models with one or two extra
variables (28.4%). In contrast to the AICc independence
approach, the first explanatory variable is in 100% of
the selected models and the second explanatory vari-
able is included in 98.6% of the models.

Fig. 4 illustrates the necessity of including spatial
correlation during model selection. The top panel lists
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FIG. 4. AICc values for (a) the spatial AICc and (b) the independent AICc selection strategies. Note that the models for
the spatial AICc method have been ordered from smallest to largest average AICc over all 500 simulations. The horizontal
axis lists the variables included in each model; NULL refers to the intercept-only model.

TABLE 2. Spatial AICc model selection results for five dif-
ferent sampling patterns.

Variables in
model

Highly
clustered

Lightly
clustered

Ran-
dom

Regular
pattern

Grid
design

X1, X2, X3 73 65 46 43 16
X1, X2 0 2 18 21 35
X1, X2, X3, X4 12 13 8 8 3
X1, X2, X3, X5 10 13 11 7 7

Notes: Each column reports the percentage of simulations
in which each model was selected. Of the 32 possible models,
the results given here include only those with 10% or more
support for at least one of the sampling patterns.

the models from smallest to largest average AICc over
all 500 simulations. The horizontal axis list the vari-
ables included in the model where null refers to the
intercept-only model. Note that the model with the
smallest average AICc is the true model (X1, X2, X3).
All of the first 16 models listed include X1, while the
first eight models also include X2. In sharp contrast,
the boxplots for the independence assumption during
model selection are virtually identical. Although the
models are listed from most to least parsimonious, any
rearrangement would look nearly identical. The lack of
trend in this plot illustrates that ignoring spatial de-
pendence during variable selection may lead to selec-
tion of an inappropriate model.

Table 1 also demonstrates MDL’s ability to select the
appropriate model when spatial correlation is account-
ed for during variable selection. Although it only se-
lects the ‘‘true’’ model for 40.4% of the simulations,
it selects the model containing only X1 and X2 46.4%
of the time. These results are consistent with the idea
that MDL more strongly penalizes models with a large
number of explanatory variables and thus tends to se-
lect more parsimonious models. Also note that MDL
selects one of three models for more than 90% of the
simulations.

To further evaluate the performance of the spatial
AICc strategy, we performed additional simulations us-
ing different true values of the Matern correlation func-
tion parameters. These results are given in Appendix
A. As the range and smoothness parameters increased,
the true model was selected with increasing frequency.
The result for the range parameter is somewhat sur-

prising and may be a result of the signal-to-noise ratio
used in these simulations. The independent AICc ap-
proach had uniformly poor performance for all param-
eter values.

Impact of sampling pattern

The advantages of using spatial AICc when the data
are spatially correlated are enhanced when the sam-
pling pattern includes both some closely spaced and
more distant pairs of sample locations. Similar simu-
lations to those described above were performed using
the five sampling patterns shown in Fig. 3. The models
selected using spatial AICc for the five sampling pat-
terns are given in Table 2. The highly and lightly clus-
tered patterns select the true model in over 65% of the
simulations. For this simulation setup, as the sampling
pattern provides less information at small distances,
the selection of the correct explanatory variables be-
comes more challenging. Indeed, for the grid design,
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FIG. 5. Mean squared prediction error (MSPE) for the two
model selection methods based on 500 simulations.

FIG. 6. Locations in southern California where the whip-
tail lizard was observed (n 5 148).

the correct model was only selected in 16% of the
simulations.

For all five sampling patterns, the independent AICc

approach gave similar results to those for the random
pattern given in Table 1. Over all five sampling pat-
terns, the independent AICc approach selected the cor-
rect model in less than 1% of the simulations and the
model with X1 and X2 was selected 5% of the simu-
lations.

For these simulations, the AICc independence meth-
od tends to select models with very few explanatory
variables, and does a poor job of selecting models that
contain the true parameters. The spatial AICc method
does very well in selecting the true model, over a variety
of sampling designs. The spatial AICc approach per-
forms best when the sampling pattern provides sample
locations at both close and near distances such as the
highly and lightly clustered patterns shown in Fig. 3.

Mean square prediction error

Another measure of the importance of including spa-
tial correlation during model selection is the concept
of the mean square prediction error (MSPE). We can
evaluate MSPE for the simulated data because we know
the true underlying model, Eq. 7. MSPE is the average
squared difference between the actual and predicted
values at the new series of locations such that

n1
2ˆMSPE 5 (Z 2 Z ) .O j jn j51

Here Ẑi is the universal kriging predictor for the jth
prediction location using the maximum likelihood es-
timate of the parameter vector c and Zj is the true value
at location j. Small values of MSPE indicate predicted
values are close to the true values on average, where
an MSPE of exactly zero corresponds to perfect pre-
diction. What we expect to see is that the MSPE is
systematically smaller for spatial AICc compared to
independent AICc.

First, 100 locations were randomly selected over the
same study area. For each simulation in General sim-

ulation results, a new set of observations was generated
over the new grid using Eq. 1. Next we computed the
predicted response at each site using the selected model
from each method. Last, MSPE was calculated using
both methods for each of the 500 simulations. Fig. 5
illustrates the improvement made by incorporating spa-
tial correlation into the model selection process. The
mean MSPE for the spatial AICc method was 4.57 com-
pared to 5.50 for the independent AICc selection meth-
od (an improvement of 16.9%). Over the set of 500
simulations, the two methods selected the same model
only 11 times. When these simulations were removed
from the data set, the improvement in mean MSPE
increases to 17.3%. It should be noted that, when spa-
tial correlation was ignored altogether, i.e., independent
error structure, the mean MSPE was 39.6.

EXAMPLE

We applied the model selection strategy to the whip-
tail lizard data previously analyzed by Hollander et al.
(1994) and Ver Hoef et al. (2001). The data set consists
of abundance data for the orange-throated whiptail liz-
ard in southern California. A total of 256 locations in
21 regions were used for trapping. Each observation
consists of the average number of lizards caught per
day at each location. After removing sites where no
lizards were caught, a total of 148 observations re-
mained for the abundance analysis. Fig. 6 shows that
the pattern of the sites where the lizards were observed
was highly clustered. A log transformation was applied
to the response, average number of lizards caught per
day, to allow for the use of a Gaussian random field.

There are total of 37 explanatory variables available
including information on vegetation layers, vegetation
types, topographic position, soil types, and abundance
of ants. This corresponds to approximately 237 or 1.374
3 1011 total models. To make the analysis tractable,
the number of explanatory variables was reduced to
six. See Ver Hoef et al. (2001) for further details about
preliminary explanatory variable selection.
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TABLE 3. Model selection results for the whiptail lizard data set.

Predictors AICc

Spatial
rank

Indepen-
dent
rank

Ant1, sand (%) 54.1 1 66
Ant1, Ant2, sand (%) 54.8 2 56
Ant1, sand (%), cover (%) 55.7 3 59
Ant1, Ant2, sand (%), cover (%), elevation, bare rock, chaparral (%) 92.0 41 1
Ant1, Ant2, sand (%), elevation, bare rock, chaparral (%) 95.3 33 2
Ant1, sand (%), cover (%), elevation, bare rock, chaparral (%) 95.6 38 3

Notes: The first column lists the explanatory variables selected using AIC as the selection
criterion. The rank of the model (by AIC) is provided under both model selection strategies.
Ant1 corresponds to low abundance, and Ant2 corresponds to medium abundance.

The subset of explanatory variables used in the anal-
ysis were Crematogaster ant abundance (three cate-
gories: low, medium, and high), log(percentage of
sandy soils), elevation, a binary indicator variable that
described whether or not the rock was bare, percentage
of cover, and log(percentage of chapparal plants). Ant
abundance is a categorical variable and has five unique
modeling subsets. This leads to a total of 5 3 25 5 160
possible models.

All 160 unique models were fit to the data using the
spatial AICc and independent AICc strategies. We as-
sumed a Matern autocorrelation structure (without nug-
get) for each model. For comparison, the traditional
model selection approach was also applied to the data
set. Table 3 summarizes the top three models selected
when employing each strategy. For each model, the
corresponding rank under the opposing strategy is also
listed. The two methods select very different models.
When spatial dependence is incorporated into the se-
lection of explanatory variables, very parsimonious
models are chosen and are consistent with the results
of Ver Hoef et al. (2001). The traditional approach leads
to much more complicated models. By initially assum-
ing independent covariates, the selection process is try-
ing to compensate for correlation in the error structure
by incorporating too many explanatory variables. In
fact, the full model has the smallest AICc when the
correlation structure is not incorporated into model se-
lection. Finally, the top three models selected by the
MDL method exactly matched those selected by the
spatial AICc method.

SOFTWARE

Software to perform the model selection strategy for
geostatistical models is available in the Supplement.
The software, written in the R language, implements
the Matern covariance function Eq. 2, but can easily
be modified to incorporate other covariance functions.

CONCLUSIONS

Our results demonstrate the problems that can be
encountered in the selection of an appropriate set of
explanatory variables when spatial correlation is ig-
nored. Both the AIC and MDL criteria based on the

geostatistical models performed well in the selection
of appropriate explanatory variables. Ignoring spatial
correlation in the selection of explanatory variables
and/or in the modeling of the data can lead to the se-
lection of too few explanatory variables as well as high-
er prediction errors. In addition, we showed that for
the sampling patterns considered here, it is advanta-
geous to consider a clustered type of sampling design
that offers observation pairs at both small and larger
distances.

We have considered the impact of ignoring spatial
correlation on the selection of explanatory variables.
We must note that the concept of ‘‘all possible models’’
can become intractable quickly when the number of
potential explanatory variables becomes large. For this
presentation, we have assumed that only the candidate
predictors enter the model as main effects with no in-
teractions or higher order terms under consideration.
Thus, for a data set with 10 potential explanatory var-
iables there are 210 5 1024 candidate models if only a
single error structure is examined. But a data set with
20 potential explanatory variables leads to 1.04 3 106

candidate models under the same setup. This number
will increase further if, for example, we allow inter-
actions or higher-order polynomial fits. Thus there are
practical limitations to the proposed model selection
method. To overcome this limitation, the researcher has
many avenues open to her. She can perform exploratory
data analyses to reduce the number of potential ex-
planatory variables, limit the candidate models to a
particular class (such as linear), restrict the error struc-
ture to a single form, e.g., Matern without nugget, and
so forth. Often a researcher can rely on her expertise
to further reduce the size of the family of candidate
models. Both spatial AICc and MDL allow the re-
searcher to restrict the type and class of models that
best suits her needs.

Finally, other aspects of model misspecification,
such as the appropriateness of the adoption of a Gauss-
ian random field and stationarity autocorrelation func-
tion, are also important. Cressie (1993:289) and Smith
(2000:94–96) summarize some of the research on these
issues.
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AIC DERIVATION

To give a heuristic derivation of the AIC statistic in
the spatial model setup of Eq. 1, we follow the devel-
opment in Brockwell and Davis (1991:303). Suppose
Z 5 (Z1, . . . , Zn)9 and Y 5 (Y1, . . . , Yn)9 are two
independent realizations from Eq. 1 at fixed locations
(s1, . . . , sn) with true parameter value c0 5 (b0, u0,

)9. Let f (· ; c) be a candidate Gaussian density func-2s0

tion corresponding to the parameter vector c0 5 (b, u,
s2)9. Then, by the independence of Y and Z,

E [D(ĉ)] 5 E (E {22 log [L (ĉ)] z Z})c c c Y

5 E [22 log L (ĉ)]c Y

where LY is the likelihood based on Y and is theĉ

maximum likelihood estimate of c based on Z. Using
properties of the Gaussian density function and the
representation 2 5 (Z 2 X )9 21( )(Z 2 X )/n, weˆŝ b̂ V û b̂

have

2222 log [L (ĉ)] 5 22 log [L (ĉ)] 1 ŝ S (b̂, û) 2 nY Z Y (8)

where SY( , ) 5 (Y 2 X )9 21( )(Y 2 X ). Theˆb̂ û b̂ V û b̂

goal is to find an unbiased approximation for
Ec[ 22SY( , )] of Eq. 8.ŝ b̂ û

Using a second-order Taylor series to expand SY( ,b̂

) in a neighborhood of (b, u), we obtainû

]S (b, u)YS (b̂, û) . S (b, u) 1 [(b̂, û) 2 (b, u)]Y Y ](b, u)

21 ] S (b, u)Y1 [(b̂, û) 2 (b, u)]9
2 ](b, u)](b, u)9

3 [(b̂, û) 2 (b, u)]. (9)

To evaluate the expected value of the terms in Eq. 9,
we assume that standard asymptotics hold for the MLE

5 ( , , 2)9. These areĉ b̂ û ŝ
i) ( , )9 is approximately normal with mean (b, u)9b̂ û

and asymptotic covariance matrix given by the inverse
of the Fisher information, In.

ii) For large n, can be approximated by21In

21
21 ] S (b, u)Y:V(b, u) 5 2 Ec25 6[ ]2ŝ ](b, u)](b, u)9

iii) For large n, n 2 5 SZ ( , ) is distributed asŝ b̂ û
s2x2(n 2 p 2 k) and is independent of ( , )9, whereb̂ û
k is the dimension of the parameter u associated with
the correlation function for the noise process {d(s)}.

Using the independence of Y and Z, we find that

E S (b̂, û) . E S (b, u) 1 [(b̂, û) 2 (b, u)]9c Y c Y

213 [V(b̂, û)] [(b̂, û) 2 (b, u)]

2 2. s n 1 s (p 1 k).

Hence, from the last two terms of Eq. 8, we have

22E [ŝ S (b̂, û)] 2 nc Y

225 E (ŝ )E [S (b̂, û)] 2 nc c Y

21n 2 p 2 k 2 2
2 2. s s (n 1 p 1 k) 2 n1 2n

p 1 k 1 1
5 2n .

n 2 p 2 k 2 2

The quantity

p 1 k 1 1
AICC 5 22 log [L (ĉ)] 1 2n (10)Z n 2 p 2 k 2 2

is an approximately unbiased estimate of the expected
Kullback-Leibler information evaluated at .ĉ

The argument given above for AICc relied on the
validity of standard asymptotic theory for the maxi-
mum likelihood estimates of the parameters in the spa-
tial model in Eq. 1. In order for these results to hold,
it is likely an increasing sample size that both fills in
and expands the domain under study is required. In the
statistics literature, this is often referred to as infill and
increasing domain asymptotics. Unfortunately, asymp-
totic theory for maximum likelihood estimates for un-
equally spaced data is not fully developed. In the case
where data are regularly spaced on a lattice, more com-
plete asymptotic results can be obtained.
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APPENDIX A

A comparison of the performance of the spatial and independent corrected Akaike Information Criterion (AICc) model
selection strategies for various parameterizations of the Matern autocovariance function (Ecological Archives A016-007-A1).

APPENDIX B

A listing of the working equations used to compute spatial AICc, independent AICc, and minimum description length
(MDL) (Ecological Archives A016-007-A2).

SUPPLEMENT

Software to perform model selection for geostatistical models (Ecological Archives A016-007-S1).


