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Abstract

This article develops a model to relate a multivariate compositional response to a number of covariates
and proposes a new graphical model, called the Random Effects Discrete Regression (REDR) model,
which allows for examination of the complex conditional relationships between a set of covariates
and multiple discrete response variables. The approach offers a number of advantages over previous
approaches and allows for a wide range of inferences. Relationships between compositional observations
can be evaluated through a set of interaction parameters and inference about the influence of covariates
is possible through a set of regression coefficients. The model also allows for examination of relationships
between the covariates via another set of interactions. Parameter inference via Bayesian methods and
MCMC is discussed. The proposed model and MCMC methods are used to examine the relationship
between compositional observations of two characteristics of fish species and a number of covariates.
These relationships are of interest to the U.S. Environmental Protection Agency for stream monitoring.

1. Introduction

This article proposes a class of models for compositional data based on traditional graphical models.
A compositional observation P = (P, ..., Pp) possess the two constraints: > ;Pi=1 and P; >0
for j =1,...,D. Compositional analysis is preferred to the unconstrained positive multivariate
observations if relative size is a more appropriate measure than the observed counts for each
vector element. A discrete multivariate compositional observation arises when numerous sampled
individuals at a site are cross classified according to a number of categorical variables forming a
(possibly) high dimensional contingency table. The composition of interest is the probability that a
randomly selected individual falls into a particular cross classification. The goal herein is to relate
a multivariate compositional response to a number of covariates. Our approach offers a number of
advantages over previous approaches and allows for a wide range of inferences including inferences
on the relationship between various compositional response variables as well as inferences on the
relationships between compositions and the explanatory variables.

Aitchison (1986) provides an overview of models for compositional data. There are a number
of challenges in modeling compositional data. First, there is a necessary correlation structure due
to the sum-to-one constraint. In fact, Pearson (1897) used compositional data as an example of
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spurious correlation. Secondly, there is an absence of an interpretable correlation structure. Not all
positive definite matrices are valid covariance matrices for compositional random vectors. Finally,
many existing models impose a rigid correlation structure that is due solely to the sum-to-one
constraint. The Dirichlet distribution possesses this inflexibility.

The logistic-normal distribution has been proposed as a suitable distribution for compositional
data in that it has a sensible covariance structure and offers a suitably rich family of distributions
with which to model compositional data. If the random vector X = (X3,...,Xp_1), where X; =
log(P;/Pp), follows a multi-variate normal distribution, then P = (P,,... , Pp) follows a logistic
normal distribution (Aitchison and Shen, 1980; Aitchison, 1982) This distribution is not fully suitable
for the problem considered here, however, because our data are discrete compositional data with
extra variability due to sampling error. Also, the logistic normal density is not defined when the
proportion in a particular class, P;, equals 0, a common occurrence when the raw data are counts. A
solution to this second issue was proposed by Ghosh et al. (2002) who adopt a mixture distribution
consisting of a logistic normal distribution and a distribution that is degenerate at 0.

Billheimer (1995), Billheimer and Guttorp (1997), and Billheimer et al. (2001) proposed a model
for a univariate compositional response which eliminates the problems in the logistic normal model
caused by zeroes and low abundance counts when modeling species compositions. We build upon
and extend their model to allow for multivariate compositions.

Graphical models are distributions for analyzing the conditional relationships of a Markov
random field (Lauritzen, 1996). We propose a two component graphical chain model in which a
set of categorical (or discrete) random variables is modeled as a response to a set of categorical
and continuous covariates. This proposed model, called the random effects discrete regression
(REDR) model, offers a number of advantages to analyzing compositional data. For the univariate
composition considered in the Billheimer-Guttorp model, it is challenging to extend the results to
more than three levels of response in a given category. We offer a graphical model framework which
overcomes this difficulty and use the REDR model to construct a Bayesian hierarchical model
for inference. Using the REDR model and some new results on graphical models, the complex
conditional relationships between the covariates and multiple response variables as a whole system
through inference from a graphical chain model can be examined.

To illustrate analysis with the REDR model, examine the relationship between two characteristics
of fish species and a number of environmental covariates. These relationships are of interest to the
U.S. Environmental Protection Agency for stream monitoring. Our focus is on an application related
to ecological modeling, but compositional data are prevalent in many other areas including geology,
biology, economics and chemistry.

Section 2 describes the problem of interest while Section 3 introduces the model and a Bayesian
approach to parameter estimation. The results of the fish species abundance analysis are discussed
in Section 4.

2. Statistical Analysis of Species Composition

Relating the presence or absence of organisms and their biological characteristics to local
environmental conditions is a challenging problem for ecologists (Legendre et al., 1997). Distributions
of specific species are usually of limited interest as they are often biogeographically constrained,
thereby restricting ecological inference to one geographic range. Recoding taxonomic species in
terms of their membership in a number of functional trait categories allows for modeling of
organism-environment relationships that can transcend biogeographic boundaries and may even
apply across ecosystem types (Poff and Allan, 1995).
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2.1. Previous Work

The problem of relating species traits to environmental conditions is of interest to ecologists trying
to understand basic natural processes. Beyond this, scientists and policy makers concerned with
monitoring natural resources also find such analyses to be useful. The U.S. Environmental Protection
Agency (EPA) monitors the chemical, physical, and biological quality of streams in the United
States, in part by counting the number of fish species at a number sample locations and relating
this to environmental conditions at the sites. Since fish species vary over the landscape due to a large
number of factors, it is useful to monitor the traits of fish instead of the specific species themselves.
For example, species differ in their tolerance for high organic pollutant loads that reduce dissolved
oxygen in the water; characterizing the relative proportion of species possessing such tolerance across
the landscape can provide insight into water pollution. Because all species can be characterized in
terms of possessing this trait, the functional approach allows for broad, interregional comparisons.

Various approaches have been used to describe the relationship between species traits and
environmental conditions. One approach, canonical correspondence analysis, attempts to ordinate
each species along a set of environmental axes (ter Braak, 1985). Doledec et al. (1996) continued
the ordination approach by developing methods for marginally and jointly analyzing so called R, L,
and @ tables, where R is a table with data on environmental variables at each sampling site, L is a
table of species occurrences at each site, and @ is a table of trait classifications for each species.

A more direct approach was introduced by Legendre et al. (1997), called “a solution to the fourth
corner problem.” For a single trait with multiple levels, the four corners represent four matrices:
(1) a matrix of environmental variables by site, (2) an indicator matrix of species presence by site,
(3) an indicator matrix of functional trait levels by species, and (4) a matrix of parameters relating
environmental variables to the trait. The parameters in matrix (4) are product moment correlations
between the trait counts and environmental variables and are estimated by a method of moments
approach.

There are three main problems with the previous methodologies. First, these approaches only
consider a single response variable at a time, i.e., multiple traits cannot be analyzed simultaneously.
Secondly, both of the previous approaches measure only marginal associations between the
environment and traits in question. Conditional relationships can give a more detailed measure of
association between variables. For example, variables that are marginally correlated may in fact be
independent upon conditioning on a third variable. This may provide evidence of possible mitigation
by the third variable. Finally, the previous methods provide no predictive ability. If a researcher
wants to predict the functional composition of a biological community at a site using remotely sensed
environmental measurements, the previous methods provide no means to accomplish this task. The
methodology proposed in Section 3 addresses all three of these issues. In the following section the
data set of interest is described.

2.2. Fish Traits in the MAHA Region

The EPA and other agencies are interested in assessing the ecological condition of streams and
identifying any factors that might be associated with any degradation in stream conditions [?].
During 1993-1996 the EPA, along with the U.S. Fish and Wildlife Service and other contractors,
surveyed 309 wadeable streams in the Mid-Atlantic Highlands as part of the Environmental
Monitoring and Assessment Program (EMAP). Here, we will consider the data from 1994. Streams
in the Mid-Atlantic Highlands Assessment (MAHA) were sampled during a 12-week period from
April to July. Chemical samples and several physical habitat variables were measured at the sampled
sites. Fish were sampled by electro-fishing and each fish species was classified according to several
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taxonomic and ecological categories. (McCormick et al., 2001) provides a list of all fish species
in the MAHA region along with their trait classifications. A set of watershed scale environmental
variables was also calculated for these sites from a GIS (Geographic Information System) model.
These variables include metrics such as watershed area and average amount of precipitation in the
watershed. Sites that were considered to be incapable of maintaining a fish population and sites for
which environmental covariates were not recorded were eliminated from the analysis (McCormick et
al., 2001). After removing these sites, 91 sites remained with between 1 and 23 fish species observed
at each site.

In order to perform the functional trait analysis of species occurrence, each observed species is
categorized according to two categorical variables, habit and tolerance. The habit variable describes
where species live in two levels: benthic species live on or near the stream bottom and column
species inhabit water depths between the surface of a stream and the bottom. Species tolerance
refers to a species’ ability to withstand degraded environmental conditions caused by heavy silt
loads or low dissolved oxygen. Species classified as intolerant are sensitive to human induced stream
degradation, whereas tolerant species are relatively insensitive. Species between the two extreme
tolerance classifications are classified as having intermediate tolerance. The proportion of benthic
and intolerant species are important metrics used by the EPA to measure stream degradation
(McCormick et al., 2001). Table 1 shows the cell counts for two sites. These species distributions at
each site are the response in our models. Note that there is one contingency table for every sampled
site. The distribution of cell counts for all sites is shown in Figure 1.

Table 1 Cross tabulation of the response for two sites: the number of species observed in each
combination of habit and tolerance category

Tolerance
Habit Intolerant  Intermediate  Tolerant
Site 1 Column 0 4 3
Benthic 0 1 5
Site 53 Column 1 3 3
Benthic 3 3 3

In our analysis, we are interested in the associations between the species distribution at each site
and covariates measuring local environmental conditions and landscape setting (Table 2). The local
covariates include stream site sulfate concentration (log peq/L), which measures atmospheric acid
deposition or acid mine drainage; chloride concentration (log peq/L), which is associated with human
activity; and water turbidity (log NTU), a measure of water cloudiness caused by very fine suspended
sediments. The landscape covariates include watershed area (log km?), elevation (kilometers), a
measure of stream area, and mean annual watershed precipitation (meters), a measure of stream
volume.

Table 2 Summary of environmental covariates for 1994 MAHA streams.

Covariate Mean St. Dev. Min. Max.
Area (km?) 3.04 1.19 0.78  6.39
Chloride (ueq/L) 4.60 1.14 2.64  6.98
Elevation (kilometers) 0.07 0.03 0.0015  0.14
Precipitation (meters) 1.08 0.10 0.85 1.33
Sulfate (peq/L) 5.42 0.88 3.78  8.42

Turbidity (NTU) 1.01 077 =092 340
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Fig. 1. Distribution of fish species abundance for all 91 sites for the three different tolerance
levels. Abundances are separated by habit type, column species and benthic species.

3. Model Formulation

Consider models for multivariate compositional data where sampled individuals are classified
according to two or more different categorical variables. The focus is on the proportion of counts
of a particular category of possible joint outcomes, or equivalently, the probability that a randomly
selected individual will belong to a certain cross-classification (cell).

The independence structure of the discrete variables used for cross-classification is also examined.
For example, for a two-way cross-classification of individuals according to the discrete variables I
and J, we examine whether the classification of a random individual to category i of variable I is
independent of the event that the individual is classified to category j of variable J. In other words,
we may be interested in whether separate probabilities should be modeled for each cell, or whether
a model of the form p;; = p;p; would be more appropriate, where p;;=Pr{individual in cell (i, j)}
and p;=Pr{individual in category ¢ of I'}. Even if independence of the classification variables is not
a primary research concern, it may still be appropriate to include some independence structure to
reduce the number of parameters and provide a more parsimonious model.

The term “site” is used to index each multivariate discrete compositional observation. If only
the fully saturated model (complete dependence among all classification variables) is of interest,
then a simple model that combines all of the cells into a single composition can be used. This is
the approach used by Dominici (2000) to combine several contingency tables, some with missing
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dimensions. However, if one is interested in introducing some independence structure to the cell
probabilities, then an extension of the simpler model must be considered and is proposed here.

The models proposed below are motivated by the class of models known as graphical models.
In standard graphical modeling every sampled individual generates a multivariate observation of
categorical and continuous variables. However, there is only one observation of the covariate vector
for all of the individuals observed at a particular site. To achieve our goal of developing a class of
graphical models to address this problem, the model developed requires a more sophisticated model
structure than either the standard graphical model or linear model structures.

3.1. Developing a Single Site Model

Let ® denote the set of categorical response variables, of which there are D possible
cross-classifications on the product space of the response variable levels. For each site, we
are interested in the dependence relationships among the covariates measured at the site and
the relationship between the covariates and the event that a randomly selected individual is
cross-classified into one of the D cells ys. Let Yo = {Y : ¢ € ®} denote the response vector for
a single individual, which takes one of the D possible vectors, say yo, as a realization. In addition,
let X = (Xj,...,X,) denote a vector of observable covariates at the randomly selected site. The
vector X can also be written (Xr,Xa), where I' indexes the continuous covariates and A indexes
the discrete covariates. In the analysis of fish species occurrence described in Section 2.2, we are
interested in the event that a randomly selected fish species at a particular site belongs to a certain
cross-classification of life-history traits. Table 3 gives such an example for a single “individual” (a
single species of fish) observed at site 53. Section 4.1 further develops the model described below
for the analysis of fish species occurrence.

Table 3 Notation of Section 3.1 for the fish species occurrence example described in Sec-
tion 2.2. Response yy is the response for a single species at site 53. This species has a
benthic habit and is categorized as a tolerant species. Site specific indices are added
in Section 3.2

Notation | Example
o Habit (column or benthic) and tolerance (intolerant, intermediate and tolerant)
D 6=2 habit levels x 3 tolerance levels
Yo (2,3) for 2nd level of habit variable and 3rd level of tolerance variable
X The values of the 6 continuous environment covariates at site 53

Typically many individuals are sampled at any given site. We now define the likelihood model
for sampling N individuals at a site and subsequently develop the specific terms of the likelihood,
including the probability that a single individual will be in a single cell at a given site. We first
condition on the realization of a site, which amounts to conditioning on the covariates. Sampling
N individuals at a site provides N realizations of the variable Y. These N realizations can be
summarized into a D vector of counts ¢ = {c(yo)}, where ¢(yqo) represents the number of individuals
that were cross-classified into cell yg. The count vector c represents a complete and sufficient
summarization of the IV individual responses, so we can model the counts in order to make inference
to Y. Using a multinomial model for the count vector c, the joint distribution for the counts and
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covariates, for a fixed sample size N, is

|
Ty, <(vo)!

where f(yos|x)foq(x) represent the joint density of an individual classified to cell yo and covariates
observed at the randomly selected site where the individual is observed. These terms are defined
below.

The model in (1) includes terms for for the probability that a single individual will be in a
particular cell at a single site, f(ys|x)fcq(x). In the analysis of fish species occurrence described in
Section 2.2, this corresponds to the probability that a randomly selected fish species at a particular
site (which has a particular set of site-level covariates) belongs to a certain cross-classification of
life-history traits. Using a log-linear model, we now specify a joint density for (Y¢,X), which we
call the Discrete Regression (DR) model,

M
f(yolx) =exp S as(x) + Z Z Z Brea(yo, Xa) H Ty + Z Z Z Wrydm (Y&, XA) 2] (2)

fCP cCT dCA ~YEC vl dCA m=2

Fe:%) = fu(elx) fea(x) = {H f(yq>|x>c<“>} x foa (), 1)

and
foa(x) = exp [

{)\d(XA) + T[d(xA)/xF — ;X%‘I’d(XA)XF}‘| . (3)
dCA

In the response model (2), ag(x) is a normalizing constant with respect to Yg¢|x. The regression
coefficients Brca(yo,xa) and wyam(yao,xa) correspond to interaction terms which depend on yq
and xa only through the variables associated with the sets f C ® and d C A, respectively. The
summation from m=2 to M denotes the number of higher-order terms desired in the model for
covariates x.,. For example, if M = 3 the summation is over 333 and xf’y The first order terms enter
into the model in the § terms with ¢ equal to a singleton set. In the response portion of the model
(2), interaction terms for which f = () can, without loss of generality, be set to zero (e.g. Bjcq = 0
for any ¢ C T and d C A) as they do not depend on ys and will cancel with the normalizing term
a(x). The conditional Gaussian (CG) density (3) is a joint distribution for continuous and discrete
variables. As with the interaction terms in the response model, Ay(xa), n4(xa), and ¥ 4(xa) depend
on xa only through the subset of variables associated with the set d C A. The CG distribution is
constructed by assuming that X follows a log-linear model and Xp|xa follows a multivariate normal
distribution.

To complete the DR model we must impose some constraints to ensure identifiability of the model
parameters. To accomplish this, first select a reference cell of Y, say yj, and a reference cell for
the categorical covariates, say xj. Without loss of generality, henceforth, we assume that yj and
x are appropriately sized vectors of ones, indicating the reference cells are those indexed by the
first level of all the variables associated with ® and A. Now that the reference cells are defined, set
all interaction terms in (2) and (3) equal to zero if y, =1 for any ¢ € f or x5 =1 for any ¢ € d.
These zero constraints are analogous to the zero constraints of interaction terms in classic ANOVA
models. By using these constraints we can interpret the interaction terms as measuring interactions
relative to the selected values y3; and x,. For example, given any response variable ¢ € ® and any
two covariates v € T', and 6 € A, a positive value for the interaction term Bg+s5(ys,xa) implies that
an increase in x increases the probability that a randomly selected individual will be cross-classified
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according to a cell where Yy = y4 over a cell for which Y, = 1 and the amount of increase depends
on the categorical covariate Xs.

Now we consider only the homogeneous CG distribution, where W,(xa) =0 for d # ). This
restriction is identical to the assumption that the covariance matrix of the continuous variables is
constant over all of the cells defined by the product space of XA. The model can be extended to be
non-homogeneous, if desired.

3.2. Random Effects Discrete Regression

Section 3.1 described a model for a single randomly sampled site. Now, we extend this model to
account for possibly hundreds of randomly selected sites. For each site, a separate model could be
constructed, but this would increase the number of parameters to be estimated to an unmanageable
level. In addition, the differences in non-zero parameter values are not usually of primary interest.
Therefore, we propose a global random effects model for all sites that allows site-to-site flexibility
in some of the non-zero parameter values. In order to add this flexibility as well as to model the
randomness in site selection, we introduce a random error term to the response model (2).

The addition of a random effect to the response model (2) produces a full model for Yg, X, and
the random effects € of the form

f(ye,x,€) = fre(Ya|X, €) fca(x)f(€) (4)

Since there is only one observation of the explanatory variables at each site we adopt the model
for the covariates, fog(x), that is given in (3). The response portion frr(ys|x,€) of the Random
Effects Discrete Regression (REDR) model is modified by the addition of a random intercept term
to give

fre(yolx,€)=expQ as(x) + > D> Brealys.xa) [] - (5)

fCP cCT dCA yEC
M
- Z Z Z Z Weydm (Yo, Xa) T + Z er(ye)
fCP vel dCA m=2 fco

where ef(ys) =0, if yy = 1 for any ¢ C f, to ensure identifiability. In order to allow modeling of a
given independence structure for the multivariate response, we also introduce one other constraint
on the random effects. For any set f C @, if Bfci(yo,xa) and wiyam(ye,Xa) are set to zero for
all yp and xa then €;(ye) is defined to be a zero vector. The remaining random interactions €, =
{e7(ys) : yp # 1 for any ¢ C f} are given a multivariate distribution with mean 0 and covariance
matrix (or scale parameter) 3.

The inclusion of random error terms in (5) has three benefits. First, the model can adjust for
site-to-site variability. Secondly, the model will account for some level of over-dispersion to cell
counts. Finally, every realization of the random effects provides cell probabilities that maintain
the desired independence relationships among the response variable. Johnson and Hoeting (2003)
provide proof of this fact using a Mébius inversion calculation similar to Lauritzen (1996, pg. 174).
The site-based REDR model provides an improvement over the approach of Aitchison (1986) which
only examines the average composition independence structure across sites.

In the REDR model description we did not specify the error distribution, as different situations
may necessitate different error structures. If it is reasonable to assume that the error structure is
symmetric with few outliers, then a Multivariate-Normal (MVN) distribution may be reasonable. In
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this case, the cell compositions will have a logistic-normal distribution. However, other distributions
could be used. For example a multivariate ¢ distribution with k degrees of freedom could be used if
it is desirable to have an error with heavier tails or if there is a high level of over-dispersion in the
cell counts. For the remaining discussion of the REDR model we will assume a MVN distribution
for the random effects (i.e., f(ef) = fn(er; 0,%4)).

Now that we have added random effects to the response portion of the model, the likelihood for
the response variable cell counts given the covariates x changes slightly from that given in (1). The
conditional likelihood model for the response variable cell counts ¢ given the covariates x, the total
number of individuals observed at a site, and the random effects is

N!
fu(elx,€) = L <o) ly:[ fre(yolx, €)0) (6)

yo C\Y @
where fre(ys|x,€) is given by (5).
Now, we focus on the multiple site likelihood for the explanatory variables. Assuming that the
covariate observations are independently distributed and follow a homogeneous CG distribution, we
obtain the multiple site explanatory density

s
FGx1,x9) = [ [ fea(xil A, n, ®y) (7)
i=1
where x; denotes the set of observed covariates for sites i =1,...,5 and A and i represent the
collected parameter sets {Ag(xa) : d C A} and {ny(xa) : d C A}.

We now re-parameterize the homogeneous CG density in (7) into a more useful form. First, we
break the CG density into a marginal model for the categorical components of the explanatory
variable set and a conditional model for the continuous components. We then re-parameterize the
conditional Gaussian distribution into an ANOVA-like form. This re-parameterization gives the
following form for the homogeneous CG density,

fea(x) = f(xa) f(xr|xa) = exp {Z )\d(XA)} X \/%N’Mm

dCA

/
X exp {; <X1‘ -> Td(XA)) v (Xr - Td(XA)> } (8)
dcA dcA

where Wy represents the inverse covariance matrix for the continuous variables, which have a MVN
distribution, T4(xa) = ¥, "m4(xa), and \y(xa) represents a normalizing constant in the log-linear
model for xa.

Define the vector of cell counts ca = [c(xa)], where ¢(xa) is the number of sites for which the
categorical covariates XA = xa. Using the re-parameterization of the CG density in (8) we can write
the joint density of the covariates over all sites (7) as

S S
fxi,. .. xs) = {1‘[ f(xM)} X {_HfN(foxm}

s
x fM(CAP\)HfN (sz‘; ZTd(XAi), ‘I’@> 9)

i=1 dcA
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where the explanatory observation at the ith site is given by x; = (xas, xri) and fas(ca|A) is the
multinomial density

c(xa)
far(eald) = l_li(!XA)! Hexp {Z )\d(XA)} (10)

dCA

The full likelihood for parameter estimation in the REDR model (4) is obtained by combining
the likelihood for response variable cell counts at each site (6), the random effects density, and the
explanatory variable likelihood (7).

s
fei} {xi} {e}) = [ [ fur(eilxi, €) foa (i) £ (€:)

S S
oc [T far(eilxi) > far(eald) x [T A <Xri; > Talxai), ‘I’m> (11)

i=1 i=1 dCA

s
< TT1I #~ (eri5 0.%5)
i=1 fC®
where c; is a D vector of response variable cell counts for site ¢, x; is a vector of observed covariates,

ca is a vector of cell counts for the categorical covariates, and €; represents the collection of random
effects vectors {ey; : f C ®} for the ith site.

3.3. Multivariate Compositions and Graphical Models

The models proposed in the previous sections were motivated by a class of models known as graphical
models or Markov random fields. A graphical model, or more loosely a conditional independence
model, is a probability density function for a multivariate vector that is parameterized in such
a way that a complex independence structure can be characterized by a mathematical graph. A
mathematical graph involves a set of vertices, one for each element of the vector, and a set of edges
connecting some of the vertices. Edges can either be undirected or directed. An undirected edge
between two vertices indicates bi-directional dependence between the elements while a directed
edge signifies a causal or influential effect from one element to another. If two vertices are not
connected, one can infer that the two variables which they represent are conditionally independent
given their neighbors (those vertices which are connected to the pair in question). Lauritzen (1996)
provides a through overview of graphical modeling.

The REDR model (5) and the corresponding CG model (8) for the covariates together define
a chain graph model. The interaction parameters correspond to edges between response and
covariate vertices. Edges between the covariates and response vertices are directed, whereas, within
covariate and response vertices, the edges are undirected. A given graph represents the conditional
independencies for a specific model. Edges between any two vertices are absent if and only if all
interaction parameters with subscripts containing the two variable set are zero for all values of the
covariates and response. Johnson and Hoeting (2003) provide a rigorous description of the graphical
model properties of the REDR model.

There is one difference between the REDR model and standard graphical models. The joint models
in (1) for counts and covariates are different than the standard sampling scheme for a graphical
model. Usually, every individual sampled generates a multivariate observation of categorical and
continuous variables. Here, however, there is only one observation of the covariate vector for all of
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the individuals observed at a particular site. The present sampling scheme is analogous to replication
of an experiment at the same factor levels at each site.

3.4. Parameter Inference

In order to make inference about the parameters in the REDR model (4), we adopt a Bayesian
approach for parameter estimation. The hierarchical structure of the REDR model makes Bayesian
procedures particularly attractive. There are a large number of unobserved random effects that
may or may not be considered nuisance parameters. If one is interested in dependence relationships
between the observable covariates and the response variables, or dependence relationships between
the response variables given the covariates, the random effects are usually considered nuisance
parameters. As discussed in Johnson and Hoeting (2003), these random effects can be marginalized
over in some cases without affecting the conditional independencies of the joint distribution of
the response and covariates. If, however, the unobserved compositions at all, or some, sites are of
interest then estimates of the random effects are necessary for each site to calculate an estimate
of the true site composition. When the goal is to predict compositions at sites for which only the
explanatory variables are observed, estimates of the random effects for that site are also necessary.
Modern Bayesian computational techniques can handle all of these goals with little modification.
Full development of the Bayesian approach to parameter estimation is provided in the Appendix.

4. Graphical Analysis of Fish Species Occurrence

Adopt the model described above to analyze the fish trait data described in Section 2.2. Using the
full REDR model, we can examine the complex conditional relationships between the environmental
covariates, the habit response variable, and the tolerance response variable as a whole system
through inference from a graphical chain model. The proportions of benthic and intolerant species
are important metrics used by the EPA to measure stream degradation (McCormick et al., 2001).
We are interested in inference concerning species occurrence, or the number of species observed in
each cell.

4.1. Model Specification

Consider a main-effects-only model for the analysis of the multivariate composition of habit (H) and
tolerance (T) species occurrence including only the first-order linear interaction terms. Consider the
following multinomial model for the cell counts

N!

Iu(cilxi, €) = m ngE(Yé\Xivei)dy(p)i (12)
where
6
fri(ye) = exp S as(x:) + Y Bry(ye) @y — Ty) + epilye) (13)
fCP y=0

Each of the environmental covariates was centered by subtracting its mean ., and dividing by
its standard deviation s.. This was done to improve Markov chain convergence to the posterior
distribution. Chose the reference cell y3 to be column species with intermediate tolerance level.
Thus, By (ys) = €f,:(yo) =0 for yo = (1, 2) and f C {H, T} in equation (13).

Consider three different models. In the independent model, the habit variable is independent of
the tolerance variable, so B¢, (ys) and €y;(ys) are set to zero for f = {B, T} for all covariates ~,
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sites 7, and cells y¢. In the dependent model with uncorrelated errors all interactions between cells
are estimated. Assume the random effects vectors €; are independently distributed from one another
for all sites. The dependent correlated errors model is identical to the previous model except that
the random effects vectors are correlated within each site. This is equivalent to applying a single
composition model to all six cells.

Since all of the environmental covariates are continuous, the homogeneous CG model reduces
to a MVN distribution and we assumed fog(xy,i —X4,:) = MV N(x;p — Xp; 0, %p). The centering
here allows the elimination of the nuisance parameter 7 in (8), which is irrelevant for determining
conditional independencies. Note, that in this case the posterior distribution of Wy is a Wishart
distribution. However, since we are interested in the off-diagonal elements of ¥y, using an MCMC
sampling technique allows straightforward inference of these elements.

4.2. Model Estimation and Performance

MCMC procedures were performed with the hierarchically centered version described in the
Appendix as well as with the model as originally parameterized in (13). The hierarchically centered
version reached satisfactory convergence with substantially fewer MCMC iterations than (13).

The program WinBUGS was used to run the Gibbs sampler (Spiegelhalter et al., 2000). The
Gibbs sampling algorithm was run for an initial 4000 iterations in which a MVN proposal density
was tuned so that the Metropolis-within-Gibbs step for the parameters would have an acceptance
rate of around 30%. The first 4000 iterations were discarded, after which the sampler was run
for 20,000 iterations as a burn-in period. Finally, an additional 800,000 iterations was used for
model inference. Standard diagnostics suggested that the Markov chains had converged to their
corresponding posterior distributions (Givens and Hoeting, 2005). Every twentieth iteration was
saved for parameter inferences in order to reduce storage constraints.

The Bayesian posterior predictive p-value method of Gelman et al. (1996) was used to assess
model fit for each of the three models. With this method a goodness-of-fit statistic T'(y), which
can be a function of the observed data y and model parameters, is used to compute the Bayesian
predictive p-value P, = Pr{T(y*?) > T(y) | y}. The data y*® represent a hypothesized replicate
data set that could have resulted from the model and the interpretation is essentially the same as
the classic p-value with the addition that the null distribution is the distribution of the statistic
given only the observed data y. In an MCMC setting P, is particularly easy to approximate by
generating a replicate data set at each iteration in the Markov chain. The goodness-of-fit statistic
used for this analysis was the Freeman-Tukey statistic [?]

S 2
T(ci,...,c5) = Z Z (\/C(Y©)i — V/Nifre(yelx;, Gi)) (14)

i=1 Yo

where c(ys); is the number of species belonging to cell yq¢ at site 7, N; is the total number of species
observed at site ¢, and frp(yo|Xi, €;) is given by (13) and represents the cell composition.

This naive method of approximating posterior predictive p-value can be conservative when
rejecting the null hypothesis of model fit in that the MCMC approximated p-value can be too
large when used without calibration (Robbins et al., 2000). Draper and Krnjaji¢ (2005) propose
a calibration method which could be included in a future analysis. The method is somewhat
computationally intensive so we will omit it here and use the p-value obtained as an index of
apparent model fit.
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We used the Deviance Information Criterion (DIC) for model selection (Spiegelhalter et al., 2003).
DIC is composed of two competing elements, a measure of goodness of fit and an measure of the
number of effective parameters. For example, random effect parameters may contribute less than
one parameter to the number of effective parameters. The model that minimizes the DIC criterion
is optimal under this criterion.

The measure of effective parameter dimension used in DIC can be sensitive to the shape
of the marginal posterior distributions of the likelihood components (David Draper, personal
communication). If the marginal distributions are far from Gaussian, the calculation can be very
unstable. We examined the posterior distributions of the parameters and they all appeared to be
close to Gaussian in shape. While a full examination would also require inspection of the random
effect distributions as well, we omitted this for convenience. After fitting the models, we examined
the estimated effective number of parameters for each model. The results for all models considered
were in the expected order and appeared reasonable in size, so, the calculated DIC values were
judged to be sufficient for our purposes.

4.3. Results

Table 4 lists the considered models and their DIC values. The best model as measured by DIC is the
independent response model followed by the uncorrelated errors model. There is a difference of 10.1
in DIC score between the independent response model and the nearest dependent response model
suggesting a sizable improvement in model parsimony by selecting the independent response model.
The Bayesian p-value, P,, was greater than 0.9 for all three of the considered models. This suggests
there is little evidence of lack-of-fit for any of the models. Although the dependent response models
fit the data well, they seem to contain too many parameters to be parsimonious.

Table 4 DIC and model complexity for multivariate fish species occurrence models. Models
are listed in increasing DIC order. Column ADIC represents the difference in DIC
from the model with the lowest DIC value and the column denoted with pp represents
the model complexity or effective number of parameters.

Model DIC ADIC PD

Independent 1111.1 - 66.1
Dependent (Uncorrelated errors) — 1117.8 6.7 106.1
Dependent (Correlated errors) 1166.8  55.7  162.5

The 95% highest posterior density (HPD) intervals for the (3 interaction coefficients in the
independent response model are given in Table 5. The HPD intervals in Table 5 indicate that
chloride concentration and sulfate concentration are related to the pollution tolerance response and
that elevation is related to the benthic response variable. The HPD intervals for the interaction terms
of the remaining environmental variables, watershed area, precipitation, and turbidity, contain zero
for both the habit and tolerance response variables, therefore, the analysis does not provide strong
evidence that they are related to either response. The HPD intervals for the off-diagonal elements of
Wy are given in Table 6. Again, by examining Table 6 the intervals that do not contain zero provide
strong evidence that there exists an undirected edge between the two associated variables in the
marginal graph for the covariates.

Figure 2 illustrates the chain graph for the model that is suggested by the DIC criterion. To
construct this figure, edges between vertices only were included when all of the 95% HPD intervals
for the parameters that correspond to the two vertices did not contain zero. For example, in Table 6,
all of the intervals for precipitation contain 0, so this vertex has no edges to other vertices. The DIC
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Table 5 95% HPD intervals for covariate interaction parameters in the independent response
model for the analysis of fish species occurrence

Habit Tolerance

Covariate Column* Benthic Intolerant Intermediate* Tolerant

Precipitation - (—2.17, 0.711)  (—1.64, 3.53) - (—2.68, 6.73)
Elevation - (017, 1.19)  (—0.73, 1.24) - (—0.97, 0.22)
Turbidity - (—0.25, 0.15)  (—0.37, 0.45) - (—0.19, 0.25)
Sulfate - (—0.21, 0.16)  (0.06, 0.71) - (—0.07, 0.35)
Chloride - (=0.17, 0.17)  (—0.77, —0.08) - (—0.07, 0.35)
Area - (—0.25, 0.02) (—0.11, 0.42) - (—0.29, 0.03)

*In this analysis, the Column habit and Intermediate tolerance types were used as the reference cell. Therefore, the interaction

coefficients are set to zero for those interaction terms referencing that cell.

Table 6 HPD intervals for the elements of the inverse covariance matrix ¥, for the MAHA
environmental variables. The intervals are presented on a correlation matrix scale

Elevation Turbidity Chloride Sulfate Area
Precipitation (—0.293, 0.099) (—0.152, 0.248) (—0.122, 0.273) (—0.131, 0.263) (—0.149, 0.247)
Elevation (—0.052, 0.336)  (0.391, 0.672) (—0.381,—0.001) (—0.528,—0.181)
Turbidity (—0.392,—0.016)  (0.089, 0.456) (—0.109, 0.284)
Chloride (—0.623,—0.318) (—0.485,—0.128)
Sulfate (—0.028, 0.359)

criterion suggested that the independent response model is more parsimonious than a dependent
response model. As noted in Section 3.2, the independent response model is a preservative model in
the sense that relationships are preserved after marginalizing over the random effects [?]. Therefore,
Fig. 2 shows the subgraph for the response and covariates only.

Elevation

Chloride

Sulfate

Tolerance
Precipitation

Fig. 2. Data suggested chain graph for the multivariate composition of habit and tolerance.
Arrows show that the covariates influence the responses, tolerance and habit.
Undirected edges between covariates suggest that at least one of the HPD intervals
for the covariance estimates between these covariates does not include 0. Lack of edge
between any of the covariates or between the response and the covariates indicates
that the corresponding intervals in Tables 5 and 6 include 0.

The findings can be interpreted in light of basic understanding of stream ecology. Elevation in this
dataset is a surrogate for headwater streams that are shallow and are occupied largely by benthic
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species. Intolerant species occurrence declines with elevated chloride levels, a surrogate for human
disturbance. The positive association between high sulfate levels and intolerant species is unexpected
and at odds with a previous study that used a univariate approach (McCormick et al. 2001). We
note, however, that the 95% HPD interval for this association almost includes 0, and that there
is a strong negative correlation of sulfate with chloride which suggests the possibility that these
covariates are drawing from the same latent disturbance process to which sulfate concentration
is negatively related. And, it possible that disturbance process is influencing species occurrence.
Similarly the addition of latent process to model tolerance could enhance the model. The ordering
in the tolerance variable, intolerant to moderate to tolerant species was ignored in this analysis;
inclusion of a latent process measuring tolerance on the continuous scale but observed on a discrete
3-point scale could but used to better address this issue.

The model developed here allows for predictions at locations where only the covariates are
observed. These results were not included in this analysis due to the relatively small sample size.
An example of predictions for a similar model is given in Johnson (2003).

Appendix: Parameter Inference

Bayesian inference for graphical composition models proceeds by first defining a prior distribution
for the parameters of the model 7(3,w,\, 7, ¥y, ). Here, subscripts are removed in order to
ease notational burden. For example, 3 refers to the entire set of parameters {Bfci(yo,xa): f C
®, ¢ CT, and d C A}. Assuming that the observations at each site are independent, the posterior
distribution of the parameters and the random effects is given by

S
prSt(ﬁawv)‘vT7‘I’®,2,{6} | {C},{X}) X Hfl\/f(ci|ﬁawvxia6i) X fM(CA|S, A)

=1

S S
< [T £ (xrilxas, 7. %) x [T [T fv(eril=s)  (15)
=1

=1 fCo
X 71—(67“’7 A? T7 @(07 2)7
where {e} ={€;: i=1,...,5}, {c}={c;: i=1,...,5} and {x} ={x;: i=1,...,5}

The posterior distribution (15) is a non-standard distribution; therefore analytical inference for
posterior objects of interest such as expected values and credible intervals is not possible. We will
draw a sample from this distribution using a Gibbs sampling approach (e.g., Givens and Hoetings
(2005)).

Assuming the CG parameters are independent of the remaining parameters simplifies the analysis
with 7(8,w, A\, 7, ¥y, X) = 7(B,w, X) x (X, 7, ¥y) so the posterior distribution is given by

prSt (/33 w, Aa T, ‘Il(l]a 27 {6} |{C}, {X}) X prSt (57 w, 2’ {6} |{C}7 {X}) X prSt(Av T, lIl@ |{X})

The parameters of the explanatory portion of the graphical model and the parameters of the response
portion of the graphical model are a posteriori independent. This simplifies the analysis of the
posterior distribution because two separate MCMC analyses can be performed, one for each chain
component. This type of sequential estimation is often used to estimate chain model parameters
(Whittaker, 1990, p. 310).



traitspaper2b Samples December 23, 2005 15:48

Biological Monitoring: A Bayesian Model for Multivariate Compositional Data 285

A.1 Hierarchical Centering Parameterization

Now we present a modification to the response model parameterizations presented in (5). When using
a Gibbs MCMC procedure, the Markov chains for regression coefficient parameters in random effects
generalized linear models, such as 3 and w, are often slow to converge to the marginal posterior
distribution (Chen et al., 2000, pg. 40). It has been our experience that this is also the case for
the proposed composition models. Therefore, we will use a hierarchical centering parameterization,
as suggested by Chen et al. (2000), to help reduce the problem of poorly mixing chains for the
regression coefficients 8 and w.

In order to describe the hierarchical centering parameterization, first recall the response portion
of the REDR distribution (5). We introduce a shortened notation for the fixed effects portion of the
response model for each f C &, with

M
pr(ys) = Z Z Bred(yo,Xa) H Ty + Z Z Z Wfrdm (Yo, Xa) T (16)

cCI' dCA YEC ~el' dCA m=2

Then we propose the following hierarchically centered re-parameterization of (5),

Fd(ysle) = exp{ S os(ya) (17)
fco

where p¢(yo) = pf(yo) + €r(ya), f # 0 and ¢y represents the log normalizing constant with respect
to Yo given ¢,

pop=—log |> expq > wlya) p|, f#D (18)
Yo

fco

If the assumption is made that €5 ~ fn(0, X) for f C ® that are not set to zero, as portrayed
in (11), then ¢, = {ps(ya) : yp # 1 for any ¢ C f} ~ fn(pys, ), where p; is the vector [ps(ys)]-
Here we have simply changed the random effects €y from a zero mean process to a process, ¢y,
centered at the fixed effects p . In the case of generalized linear mixed models there is no theoretical
result to show that this will improve mixing of the MCMC procedure. It has been our experience,
however, that the re-parameterization often greatly improves mixing for these models.

The general parameterization of the full posterior distribution is given by

Fpost (Bsw, A ¥, {oi} | {ei}, {xi})

S
x Hfg\zl)(cz‘%) HfN(Qofz‘Ivawfazfvxl) 71'(5,(.&.’72)
i=1

fce

S
x| T £ (erilxas 7, %) | far(calMm(A, 7, ®) (19)

i=1
A.2 TImplementing the Gibbs Sampler

In order to implement the Gibbs sampler to draw a sample from (19) we need to obtain the full
conditional distribution for each parameter. The full conditional distribution is the conditional
distribution of the parameter in question given all remaining parameters as well as the observed
data. A (non-independent) sample from the posterior is then drawn by iteratively drawing from each
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full conditional distribution. We derive the full conditional densities in two separate groups due to
the fact that the full conditional densities for the response model parameters, 3, w,{p;}, and X,
will not be functions of the explanatory model parameters A, 7, and ¥y, as can be observed from
(19). Therefore we can make inferences about the response model parameters using only the first
factor on the left hand side of the proportionality, while inferences about the explanatory portion
of the chain graph uses only the second factor.

A.2.1  Response Model Conditional Densities

Before deriving the full conditional densities we introduce some notation. Let E refer to a matrix
that has S rows and r columns including a column of ones, a column corresponding to each of the
explanatory variables, and a column for each interaction and powers of the continuous covariates
as given in (5). If a covariate X5, § C A, is a categorical variable with b levels, then it will be
represented by b — 1 columns of indicator variables in E, where each column indicates, with a one
or zero, if X4 takes the associated level at site i. The column associated with the reference level
X5 = 1 is not included. The vector E;, i = 1,...,.5 will denote an r-vector formed from the ith row
of E. In addition, let Dy denote the length of ¢;(ys) and let By represent an r x Dy matrix of
all the interaction coefficients {Bfci(ys) : ¢ €T, d C A} and {wyam (Yo, xa) 17y €T, dC A, m =
1,..., M} such that the expected value (16) of the site i random effect ¢ ; is given by py = B E;.
The stacked version of By will be represented by B,. The stacked version is a 7Dy x 1 vector where
the columns of By have been concatenated in order. Although previously described as the collection
of all random effects, ¢ will now specifically represent a S x Dy matrix of these random effects
and ¢ ; is a Dy vector formed from the ith row of ¢ ;. Finally, we will make use of the inverse of
the Dy x Dy random effects covariance matrix Ty = E]?l.

Now we can derive full conditional distributions for the parameters of the response model,
the coefficients in the matrices {By : f C @}, the site random effect matrices {¢;: f C @}, and
the random effects inverse covariance matrices {Ty : f C ®}. In addition to the increased rate of
convergence, the hierarchical centering provides a Gibbs sampler that is easier to implement due
to the fact that the interaction coefficients as well as the random effects covariance matrices will
have standard full conditional densities. In the non-centered parameterization only the covariance
matrices have standard full conditional densities. Here, we will also make the assumption that
for each f C @, the interaction coefficients and the covariance matrices are a priori mutually
independent across all f, so 7(8,w, X) = [[ ;4 (B, wy)m(Xy).

We begin with the interaction coefficients in By for any f C ®. First, note that due to the
centering parameterization, given the random effects ¢, at each site and the random effect
inverse covariance matrix T, the interaction coeflicients are independent of the cell counts. If
we let 7(Bp,wy) = 7(Bys) = fn(Bys; ,ust,V_Blfs) and By = (E'E)"'E'p; (correspondingly By,
represents the stacked version) then the full conditional distribution of the interaction coefficients
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is given as

S
1
f(Bys| ... ) ocexp {2 > (pri—BYE) Ty (¢, — B}Ei)}

=1

1 1 . .
X exp {—Q(st —bp,.) Ve, (Bys — ust)} o exp {—2““ [Tf(Bf -B;)E'E(B; - Bf)] }
1 1 . .
X exp {—Q(st — g, ) Vi, (Bys — ust)} = exp {—Q(st —By,) (T @ E'E)(Bys — st)}

1
cosp {5 (B~ s, Vi, (B~ i, ) | (20)

where ® represents the Kronecker product. The second proportionality statement for the random
effects likelihood is due to Johnson and Wichern (1992, pg. 322). Completing the square leads to

FBys| o) = fnBys; py1 Vi) (21)

where the mean and covariance are given by

ppo = (T @BE) +Vp, ] (T @ BE)By, + Vi, 5, |

(22)
andeJ = (Tf X E/E) + \/va5

Therefore, in the Gibbs sampler, drawing samples of the interaction coefficients is a relatively simple
draw from a multivariate normal distribution.

We now derive the conditional distribution for the inverse covariance matrix T¢ of the random
effects ;. We assume, a priori, that Ty has a Wishart distribution, fu (Ty; ay,Ky), with prior
parameters a > Dy — 1, Dy x D¢ positive definite matrix K¢, and density

D 1
m(Ts) = fw(Ty; ap, Ky) o |Tg[*Pr 1)/2€XP{—2t7“[Kfo]} (23)

This is equivalent to specifying an inverse Wishart prior distribution for 3. Now, Ty only depends
on ¢, and By through the random effects distribution, which is a MVN distribution. Therefore we
obtain the following full conditional distribution,

S
1
F(Ty] ) o | Ty exp {—2 > (pr: — BYE) Ts(py,; — B'fEi)}

i=1

D 1 atS—Dse
TP exp { - St [T = 00 2

S
1
X exp {Qtr T, {Kf + Z(QON - BE) (¢, — B’fEZ)} } (24)
i=1
It follows, then, upon examination of (23), the full conditional distribution of T is given by
Tyl ) = fw(Tys ar, Kya) (25)
where the full conditional parameters are af; = ay + S and
s
K=Ky + Z(‘Pf,i - B}E;) (¢;; — B/E;) (26)

i=1
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Therefore, just like the interaction coefficients, the inverse covariance matrix Ty is relatively
straightforward to sample from in the Gibbs algorithm.

The vector of site random effects, ¢ ; does not have a standard full conditional distribution. The
full conditional density is given by

Fl@pil ) o [l (cilgs) (@ yi: BYEL T (27)

Since the full conditional density is non-standard, we employ a Metropolis-within-Gibbs step to
sample from this full conditional distribution.

A.2.2  Conditional Distributions for the Explanatory Variables Model

To derive the conditional distributions for the parameters in the explanatory variable CG model (8)
we first note that the categorical and continuous explanatory variable parameters are functionally
independent. Therefore we can perform separate posterior analyses for the discrete and continuous
partitions of the explanatory model. The derivation of the required conditional distributions is
similar to the derivations given above, so these are not given here. Complete derivations are provided
in Johnson (2003).
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