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Abstract

We propose a two component graphical chain model, the discrete regression
distribution, in which a set of categorical (or discrete) random variables is modeled
as a response to a set of categorical and continuous covariates. We examine neces-
sary and sufficient conditions for a discrete regression distribution to be described
by a given graph. The discrete regression formulation is extended to a state-space
representation for the analysis of data collected at many random sites. In addition,
some new results concerning marginalization in chain graph models are explored.
Using the new results, we examine the Markov properties of the extended model
as well as the marginal model of covariates and responses.
Key words and phrases: chain graph, contingency table, discrete regression
model, graphical models, marginalization, random effects

1 Introduction

A graphical model, or more loosely a conditional independence model, is a probabil-

ity density function for a multivariate vector that is parameterized in such a way that a

complex independence structure can be characterized by a mathematical graph. A math-

ematical graph involves a set of vertices, one for each element of the vector, and a set

of edges connecting some of the vertices. Edges can either be undirected or directed. An

undirected edge between two vertices indicates dependence between the elements while
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a directed edge signifies a “causal” or “influential” effect from one element to another.

Herein, we consider chain graph models. Chain graphs are contain both undirected and

directed edges. Frydenberg (1990a) and Studený and Bouckaert (1998) provide thorough

descriptions of chain graph properties and models.

Research in graphical models has grown considerably over recent years. Whittaker

(1990) and Lauritzen (1996) offer comprehensive overviews of the field. This growth in

research effort is undoubtedly due to wide applicability of graphical models in many

areas of statistics. These models provide methods for examining complex relationships

in multivariate distributional models. These complex relationships are described by the

Markov properties of the distribution.

In classical inference for graphical models it is standard to assume that measured

individuals essentially represent a sample from a single population, such as a city popu-

lation or geographic site. If multiple individuals are sampled from each of several sites,

the likelihood should be constructed to allow for the possibility that individuals from the

same site may not be independent. If the number of locations is small one could account

for this site effect by the addition of a “site” covariate or margin in a contingency table.

A large number of sites, and hence a large number of parameters, precludes this solution.

Discrete compositional data provide a ready example of multiple site discrete

data. Each compositional observation represents a multivariate vector of counts where

each count represents the number of individuals at a randomly selected sampling site

that possess a certain trait. Essentially, each site possess a contingency table of counts.

Aitchison (1986, pg. 328), Billheimer and Guttorp (1997), Billheimer et al. (2001), and

Johnson (2003) provide examples of this type of data. For the remainder of the paper

we will use the term site to refer to a compositional observation, however, sampling does

not have to take place over geographically referenced sites. Sampling could take place

over time, for example.

In his book on compositional data, Aitchison (1986, pg. 327) notes that com-

positions originating from discrete counts could be thought of as “random effects” for

standard categorical data analysis techniques such as log-linear modeling. Aitchison’s

brief comment concerning the link between categorical data analysis and discrete com-
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positional data motivates this research.

In order to account for many random sites, we propose a new chain graph model

for a single site, the discrete regression (DR) model. This new model allows conditional

modeling of discrete variables comprising a contingency table given a set of site specific

covariates. The Markov properties of this chain graph model are examined and necessary

and sufficient conditions for the parameters are provided to ensure a given chain graph,

G describes the independence structure of the model.

Following examination of the DR model, we extend the model to allow for “unob-

served site effects” through the addition of random effects. The effect of latent variables

on graphical associations has been investigated previously by a several investigators.

Geiger and Meek (1998) illustrates a procedure for generating dependence constraints on

the distribution for the variables that are directly observable. Smith and Croft (2003)

investigate the geometry of the probability space for directed acyclic (DAG) graphical

models when latent variables are present. Tian and Pearl (2002) investigates a method-

ology for testing the validity of a DAG graph model in the presence of latent variables.

Lacruz et al. (2001) uses a chain model formulation to model hidden variables in a dy-

namic graphical model. Herein, the Markov properties of the random effects discrete

regression (REDR) model are examined with respect to an extended graph, Gε, which

includes vertices for the random effects. In addition, we also provide a class of REDR

models for which marginalization over the random effects preserves the conditional in-

dependencies described by the subgraph of covariates and response variables. Some new

results concerning marginalization in chain graph models are proposed to facilitate in-

vestigation of the properties of the marginal model.

2 Preliminaries and notation

In this section, we review some of the basic concepts concerning general graphs and chain

graphs. First, we will provide some notation for graphical terms. Throughout the article,

we generally follow the notation given by Lauritzen (1996). Secondly, will provide some

of the basic results concerning Markov properties of chain graph models.
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2.1 Notation

A graph, G = (V , E), is a pair of sets, where V is a finite set of vertices and E ⊆ V × V

is a set of edges. The graphs here are simple in that they contain no loops (an edge with

the same beginning and end vertex) or multiple edges (all members of E are unique).

Let (α, β) ∈ E. If (β, α) ∈ E, the edge is referred to as undirected. If (β, α) 6∈ E, the

edge is directed.

The usefulness of graphical models is due to the fact that a graph is a visual

object and can be represented by a picture. Vertices are represented by dots and edges

are represented by lines between the dots. For β ∈ V and γ ∈ V , an undirected edge is

represented by a line between the dots associated with β and γ. In text, an undirected

edge is denoted by β ∼ γ. If α is also an element of V and (α, β) ∈ E but (β, α) 6∈ E,

then, an arrow is drawn from α to β on the graph. In text this is denoted as α → β . If

(α, δ) 6∈ E and (δ, α) 6∈ E, for δ ∈ V , then there is neither an arrow nor a line between

α and δ. Absence of a line is denoted by α � δ.

In a chain graph, there exists a known ordering of the vertices. If it is possible for α

to influence or “cause” β , then α is said to precede β in this ordering. In an independence

graph, an arrow may be present from α to β (α→ β). When following a path from one

vertex to the next, as with directed graphs, one must obey the direction of the arrow,

if present. A cycle is a path for which the end vertex is also the starting vertex. A

requirement of chain graphs is that they have no directed cycles. The set of descendants,

de(α), of a vertex α ∈ V , is the set of vertices, β, such that there exists a directed path

from α to β, but not from β to α. The non-descendants are nd(α) = V \ [de(α) ∪ {α}].

The non-descendants of a vertex are those vertices in the “causal” present and past.

Suppose A ⊆ V is a subset of vertices. Then A induces the subgraph GA = (A,EA)

from G , where EA = E∩ (A×A). All edges with starting and ending points in A remain

in the new graph, every edge with the vertices in that are not in A, V \ A are removed.

Throughout this article, we use the set notation A \B to refer to the elements in A that

are not in B. Additionally, we use Ac = V \A to represent the compliment of a set. We

will also use the notation |A| to refer to the cardinality of the set A.
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If an arrow is present from α to β , then α is said to be a parent of β . Conversely,

β is said to be a child of α . The set of parents of β is denoted by pa(β) and the set

of children of α as ch(α). If α ∼ β , then α and β are said to be neighbors and ne(α)

represents the set of neighbors of α . For a subset A ⊆ V , pa(A), ch(A), and ne(A)

denote the vertices that are not themselves members of A, but are parents, children, and

neighbors of the vertices in A:

pa(A) =
⋃
α∈A

pa(α)\A

ch(A) =
⋃
α∈A

ch(α)\A

ne(A) =
⋃
α∈A

ne(α)\A.

The boundary of the subset of vertices, A, is the set of all neighbors and parents of

A, bd(A) = pa(A)∪ne(A). The closure of A is given by A∪ bd(A). A graph is said to be

complete if all vertices are joined by a line or arrow. A subset of vertices is complete if it

induces a complete subgraph. In an undirected graph, a set B is said to be simplicial if

bd(B) is complete. A collection of connected sets {Bi} is said to be a simplicial collection

if all sets Bi are simplicial.

Chain graph models are constructed by conditioning random variables based on

previous elements of the chain graph. These previous random variables are designated

in a chain graph by the term chain components. The chain components can be seen

in a chain graph by removing all of the directed edges. A chain component τ is called

terminal if for every α ∈ τ , ch(α) = ∅. A subset of vertices is called an anterior set if it

can be generated by successive removal of terminal chain components.

Finally, using the notation of Frydenberg (1990a), we define the moral graph,

Gm = (V,Em), generated from G. First, recall notation for the undirected version G∼ of

a graph G = (V,E). The undirected version G∼ = (V,E∼), where E∼ is the same as E

except that it is augmented so that all of the edges are undirected. The moral graph is

generated from G by Em = E∼⋃
τ∈T E

∗{pa(τ)}, where E∗{A} is a complete collection

of undirected edges for vertices in A. In other words, Gm is the undirected version of G

with the addition that the parents of each chain component τ are made complete.



RANDOM EFFECTS GRAPHICAL MODELS 6

2.2 Markov Properties

With the previous collection of tools, we are now able to describe the Markov properties

of chain graphs. Frydenberg (1990a) gives extensions to the definitions of the undirected

Markov properties for use with chain graph models.

Markov Properties. Let G be a chain graph that indexes a set of variables with

probability measure P . The probability measure P is then said to be

(P) Pairwise Markovian with respect to G if, for any pair (α, β) of non-adjacent vertices

with β ∈ nd(α)

α ⊥ β | nd(α) \ {β};

(L) Local Markovian with respect to G if if for any vertex α ∈ V

α ⊥ nd(α) | bd(α);

(G) Global Markovian with respect to G if for any triple (A,B, S) of disjoint subsets of

V such that S separates A from B in (Gan(A∪B∪S))
m, the moral graph of the smallest

ancestral set containing A ∪B ∪ S, we have

A ⊥ B | S.

If P possesses all three of the properties, it is said that P is Markovian with respect to

G. These properties are in fact, generalizations of the undirected Markov properties in

that if G is an undirected graph, then the chain Markov properties are equivalent to the

undirected Markov properties (Frydenberg, 1990a).

Frydenberg (1990a) also provides a theorem for distributions with a positive and

continuous density that relates the Markov properties to Gibbs factorization of the den-

sity.

Theorem 2.1. For any distribution P which has a positive and continuous density p(x)

with respect to a product measure, the following four statements are equivalent for any

chain graph G:
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i. P is Markovian with respect to G

ii. p(x) =
∏
τ∈T

pτ |bd(τ)(xτ |xbd(τ)) where Pcl(τ) is Markovian w.r.t (Gcl(τ))
m for all τ ∈ T

iii. p can be factorized

p(x) =
∏
τ∈T

∏
C∈Cτ

ψC,τ (xC,τ )

such that ∫
Xτ

∏
C∈Cτ

ψC,τ (xC,τ )µτ (dxτ ) ≡ 1

for all τ ∈ T where T denotes the set of chain components in G and Cτ denotes the

collection of cliques in (Gcl(τ))
m

iv. (iiii) If A is an anterior set then fA has a Gibbs factorization w.r.t. (GA)m.

We provide a fifth condition, which is not mentioned by Frydenberg (1990a), but

is also equivalent to the statements in Theorem 2.1

Lemma 2.1. Statements (i) - (iv) in Theorem 2.1 are equivalent to the statement

v. p(x) can be factorized

p(x) =
∏

τ∈T
∏

B∈Bτ
ψB,τ (xB,τ )(0)such that∫

Xτ

∏
B∈Bτ

ψB,τ (xB,τ )µτ (dxτ ) ≡ 1

for all τ ∈ T where T denotes the set of chain components in G and Bτ denotes a

collection of complete subsets in (Gcl(τ))
m.

Proof. Suppose that p factorizes as (v), then one can rewrite p(x) as in Theorem 2.1(iii)

by defining

ψC,τ (xC,τ ) =
∏
B⊆C

ψB,τ (xB,τ ).

Now, supposep factorizes according to Theorem 2.1(iii), then, it factorizes according to

(v), since, Cτ is a collection of complete subsets in (Gcl(τ))
m.
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Lemma 2.1 essentially weakens statement (iii) of Theorem 2.1. The density p for

probability distribution P does not have to factorize according to the cliques of a graph

in order to be Markovian, it is enough for p to factorize according to complete sets which

are not necessarily maximally complete. The condition in Proposition 2.1 is often easier

to check than Theorem 2.1 (iii) when trying to ascertain whether or not a distribution is

Markovian with respect to a given graph because there is no need to find the maximally

complete subsets. In complicated graphs, the cliques may be hard to determine.

3 Marginalization in Chain Graph Models

In this section we describe some marginalization results for general chain graphs. These

will be used to examine the consequences of marginalizing the random effects model,

proposed in Section 5, over the unobserved latent effects. Specifically, we will use these

results to examine the marginal model to determine whether conditional independencies

between the covariates and responses are preserved under integration.

Marginalization in the case of undirected graphical models was first investigated

by Asmussen and Edwards (1983) in the discrete variable setting. Frydenberg (1990b)

continued investigation of marginalization of undirected graphical models in the mixed

variable case. Typically, when considering marginalization of graphical models, interest

lies in whether the marginal distribution PA of a subset of variables A is Markovian

with respect to the subgraph GA. Frydenberg (1990b) provides necessary and sufficient

conditions for this to be true for the conditional Gaussian graphical model. Castillo et al.

(1998, 1999) introduce marginalization operators for determining the subgraph for which

a marginal distribution is Markovian.

There has been relatively little investigation into marginalization in chain graphs.

Koster (2002) investigates the marginalization of MC graphical models, of which chain

graphs are a subset, according to a separation criterion defined within. Koster notes that

the defined separation criterion is not equivalent to the classic moralization criterion of

Lauritzen and Wermuth (1989) and Frydenberg (1990a). In this section, we extend some

of the definitions and results contained in Frydenberg (1990b) to chain graph models.
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First, many of the marginalization results of Frydenberg (1990b) are based on the

notion of simplicial sets in undirected graphs. Therefore, an extension of the definition

of a simplicial set is needed for chain graphs.

Definition 3.1 (chain simplicial set). Let G = (V,E) be a chain graph. A set B ⊆ V

is said to be a chain simplicial set if bd(B) is complete in
(
Gan{B∪ch(B)}

)m
.

Correspondingly, a collection of unconnected subsetsB = {B1, . . . , BK} in
(
Gan{B∪ch(B)}

)m
is a chain simplicial collection if Bi is a chain simplicial set for each i = 1, . . . , K.

Now, we present some preliminary results concerning subsets and subgraphs when

collapsing over chain simplicial sets. The first result allows examination of anterior sets.

Lemma 3.1. Let A ⊆ V be a subset of vertices of a chain graph G such that Ac is a

chain simplicial collection. Then, for any B ⊆ A, Ac ∩ an(B) is a chain simplicial set

with respect to the chain graph Gan(B).

Proof. Consider any one of the chain simplicial sets, say Ac
i , that compose the collection

Ac, where Ac
i ∩ an(B) 6= ∅. The sets ne{Ac

i ∩ an(B)} and ch{Ac
i ∩ an(B)} remain

complete in the appropriate moral graph as they are defined by undirected edges. Since

Ac
i is chain simplicial in G, every parent in pa{Ac

i ∩ an(B)} is a parent of each member

of ne{Ac
i ∩ an(B)} and ch{Ac

i ∩ an(B)} respectively. It only remains to be shown that

pa{Ac
i ∩ an(B)} is complete in the appropriate moral graph. Since B ⊆ A there exists

at least one chain component that intersects ne{Ac
i ∩ an(B)} or ch{Ac

i ∩ an(B)}. Due

to the previous statement and the fact that every member of pa{Ac
i ∩ an(B)} is also a

parent of every member of ne{Ac
i ∩ an(B)} and ch{Ac

i ∩ an(B)}, pa{Ac
i ∩ an(B)} is also

complete in the appropriate moral graph.

The second result allows for exchanging the order of moralization and subsetting

operations when collapsing over chain simplicial sets. We introduce a new set notation

here. Frydenberg (1990a) denotes φ(A) to be the set of vertices, not in A, which can be

reached by directed path from α ∈ A. We will augment this set by the addition of the

neighbors of A to give φ∗(A) = φ(A) ∪ ne(A).
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Proposition 3.1. Let A be a subset of V such that Ac is a chain simplicial collection

and φ∗(Ac) is not empty, then the following equality holds:

(GA)m = (Gm)A.

Proof. To begin, first note that the edge set for the left hand graph can be written as

E(L) = (EA)∼ ∪
K⋃

j=1

E∗{pa(τj ∩ A)} ∩ (A× A)

= (EA)∼ ∪
K⋃

j=1

E∗{pa(τj ∩ A) ∩ A}

(1)

and correspondingly, the right hand edge set as

E(R) = (E∼)A ∪
K⋃

j=1

E∗{pa(τj) ∩ A}, (2)

where τ1, . . . , τK are the causal ordered chain components of G.

First, note that for any chain graph, we have E(L) ⊆ E(R). This is due to the fact

that pa(τj ∩ A) ∩ A ⊆ pa(τj) ∩ A for all j and (EA)∼ = (E∼)A. Now since Ac is chain

simplicial collection and φ∗(Ac) 6= ∅,

pa(τj) ∩ A ⊆ pa(τk ∩ A) ∩ A

for some k ≥ j = 1, . . . , K. If τj ∩ A = τj then the equality is trivial. Therefore, we

have two additional conditions which need consideration. (1) First assume τj ∩ A is

not empty. Then, since Ac is chain simplicial, any parent of τj ∩ Ac is also a parent of

any ne(τj ∩ Ac), therefore k = j and the containment is an equality. (2) Now suppose

τj is composed entirely of Ac vertices. Since φ∗(Ac) 6= ∅ there exists a future chain

component τk ⊆ φ(τj) such that τk intersects A. Now, since Ac is a chain simplicial, any

A parent of τj must also be a parent of τk ∩ A. The preceding argument implies that

E∗{pa(τj)∩A} = E∗{pa(τj ∩A)∩A} or E∗{pa(τj)∩A} ⊆ E∗{pa(τk ∩A)∩A} for some

k ≥ j for j = 1, . . . , K. Therefore, E(R) ⊆ E(L), hence (GA)m = (Gm)A.

Now, using the preceding results, we propose the main theorem of this section,

which states that a marginal distribution derived from a Markovian distribution is Marko-

vian with respect to the subgraph of the remaining variables if the set which is collapsed

over is a chain simplicial collection.
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Theorem 3.1. Let P be any Markovian probability distribution on X with respect to

chain graph G and let A ⊆ V . If Ac is a chain simplicial collection, then PA is GA

Markovian.

Proof. If A is an anterior set then Theorem 2.1 (4) proves the result since P is G Marko-

vian. Therefore, the remainder of the proof will concentrate on the case where φ∗(Ac) is

not empty, and hence A is not an anterior set.

First, choose sets A1, A2, and S contained in A such that S separates A1 from

A2 in (GA∩an(A1∪A2∪S))
m. If an(A1 ∪ A2 ∪ S) ∩ Ac = ∅, then A1 ⊥ A2 | S since P is G

Markovian. Now, if the set an(A1 ∪ A2 ∪ S) ∩ Ac 6= ∅, then from Proposition 3.1 and

Lemma 3.1 we have

{
GA∩an(A1∪A2∪S)

}m
=
[{
Gan(A1∪A2∪S)

}m]
A
.

Since an(A1 ∪ A2 ∪ S) ∩ Ac is chain simplicial with respect to Gan(A1∪A2∪S), and hence

is simplicial in
[{
Gan(A1∪A2∪S)

}m]
A
, S must separate A1 from A2 in

{
Gan(A1∪A2∪S)

}m

(see proof of Corollary 2.5 in Asmussen and Edwards (1983) and Frydenberg (1990b)).

Therefore, A1 ⊥ A2 | S for any such A1, A2, and S contained in A and hence, PA is GA

Markovian.

4 Discrete regression model

In this section, we propose a new chain model distribution for random vectors containing

both continuous and discrete components. We title this distribution the discrete regres-

sion distribution (DR) due to its similarity to the conditional Gaussian (CG) regression

distribution of Lauritzen and Wermuth (1989) for a discrete response. The DR distri-

bution is constructed by assuming that there exists a set Γ ∪ ∆ of continuous (Γ) and

discrete (∆) predictor variables which follow a CG distribution (Lauritzen and Wermuth,

1989). A set of discrete response variables Φ is then distributed according to a log-linear

model based on the predictor variables. Our desire to model the variables in Φ as a

response to the variables in Γ ∪∆ precludes the use of a CG distribution for the entire

set of variables as proposed by Anderson and Bockenholt (2000). The problem with
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the CG distribution is that it is not closed under conditioning (Lauritzen and Wermuth,

1989). Therefore, one would need to restrict the types of graphs used so that the Markov

properties of the CG distribution for V = Φ ∪ Γ ∪∆ will match those of a chain graph

with Φ as the terminal component. The discrete regression distribution eliminates the

need for this restriction by building a model based on the desired conditioning.

4.1 Model Formulation

The full joint distribution of the predictor variables X = (XΓ,X∆) and discrete response

variables YΦ is given as the product density p(yΦ,x) = p(yΦ|x)p(x). More specifically, we

begin by considering the conditional density of YΦ|x as a log-linear model. First, without

worrying about constraining the cell probabilities to the interval [0, 1] or the sum of the

probabilities to 1, we model the log probability for each cell yΦ of the response set with

the linear model

l(yΦ|x) =
∑
c⊆Γ

gc(yΦ|x∆)
∏
γ∈c

xγ +
M∑

m=2

hm(yΦ|x∆)′xm
Γ , (3)

where for every yΦ and x∆, gc, c ⊆ Γ is a real number, hm, m = 1, . . . ,M, is a vector in

R|Γ|, and xm
Γ = (xm

1 , . . . , x
m
|Γ|). The set notation may appear unusual at first, but, l(yΦ|x)

has the same structural formulation as a regression model that includes continuous and

categorical covariates. The set notation provides a straightforward method for describing

a general regression model with all levels of interaction between continuous and categor-

ical variables. In addition, the model also includes polynomial terms, up to some finite

power M , of the continuous variables.

Now, if we exponentiate l(yΦ|x), normalize the response cell probabilities, and

assume the marginal predictor density has the CG form (Lauritzen and Wermuth, 1989),

we obtain the DR joint density

p(yΦ,x) =p(yΦ|x)pCG(x)

= exp

{
αΦ(x) +

∑
c⊆Γ

gc(yΦ|x∆)
∏
γ∈C

xγ +
M∑

m=2

hm(yΦ|x∆)′xm
Γ

}

× exp

{
g(x∆) + h(x∆)′xΓ −

1

2
x′ΓT(x∆)xΓ

} (4)
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where αΦ(x) is a normalizing constant with respect to the response cells yΦ, for all

covariate cells x∆, g is a real number, h is a real vector in R|Γ|, and T is a real, positive

definite matrix. The functions g(x∆), h(x∆), gc(yΦ|x∆), and hm(yΦ|x∆) are independent

from one another for all yΦ, x∆, c ⊆ Γ, and m = 1, . . . ,M in the sense that they are

functionally unrelated to each other.

Now, in the same manner as Lauritzen and Wermuth (1989), we will reparam-

eterize the DR response density in terms of interaction effects. As in the proof of the

Hammersley-Clifford Theorem (Appendix A), we will define interactions terms relative

to an arbitrary but fixed value (y∗
Φ,x

∗) = (y∗
Φ,0Γ,x

∗
∆) where 0Γ is a |Γ| vector of zeros

(see Lauritzen, 1996, pg 173). For f ⊆ Φ, c ⊆ Γ, and d ⊆ ∆, define the interactions

βfcd(yΦ|x∆) =
∑
a⊆d

∑
e⊆f

(−1)|d\a|+|f\e|gc(ye,y
∗
Φ\e|xa,x

∗
∆\a) (5)

and

ωfdm(yΦ|x∆) =
∑
a⊆d

∑
e⊆f

(−1)|d\a|+|f\e|hm(ye,y
∗
Φ\e|xa,x

∗
∆\a) (6)

The following lemma shows that the classic identifiability constraint for interaction effects

in ANOVA or log-linear models is satisfied by (5) and (6).

Lemma 4.1. The interaction terms βfcd(yΦ|x∆) and ωfdm(yΦ|x∆) defined by (5) and

(6), respectively, satisfy the two identifiability constraints

(1) βfcd(yΦ|x∆) = 0 if yφ = y∗φ or xδ = x∗δ for any φ ∈ f or δ ∈ d;

(2) ωfdm(yΦ|x∆) = 0 if yφ = y∗φ or xδ = x∗δ for any φ ∈ f or δ ∈ d.

Proof. In order to prove the proposition, we only need calculate the interaction terms

under the assumption that either yφ = y∗φ for some φ ∈ f ⊆ Φ, or xδ = x∗δ for some

δ ∈ d ⊆ ∆. Therefore, first assume yφ = yφ∗ for some φ ∈ f ⊆ Φ. Then, the first
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interaction term in the proposition is

βfcd(yΦ|x∆) =
∑
a⊆d

∑
e⊆f

(−1)|d\a|+|f\e|gc(ye,y
∗
Φ\e|xa,x

∗
∆\a)

=
∑
a⊆d

(−1)|d\a|
∑

e⊆f\{φ}

(−1)|f\{e∪φ}|{gc(ye, y
∗
φ,y

∗
Φ\{e∪φ}|xa,x

∗
∆\a)

− gc(ye, y
∗
φ,y

∗
Φ\{e∪φ}|xa,x

∗
∆\a)}

= 0.

A completely analogous calculation holds by assuming xδ = x∗δ for some δ ∈ d ⊆ ∆.

Then one can repeat the calculations, replacing gc with hm to prove statement (2) of the

lemma.

Using Möbius inversion (Appendix A), we can rewrite (4) as a function of interac-

tion terms. The DR density can now be rewritten using (5) and (6) and reparameterizing

the CG density for the predictor variables as shown in Lauritzen and Wermuth (1989)

to give,

p(yΦ,x) = exp

[
αΦ(x) +

∑
f⊆Φ

∑
c⊆Γ

∑
d⊆∆

{
βfcd(yΦ|x∆)

∏
γ∈c

xγ

}

+
∑
f⊆Φ

∑
γ∈Γ

∑
d⊆∆

M∑
m=2

ωfγdm(yΦ|x∆)xm
γ

]

× exp

{∑
d⊆∆

λd(x∆) +
∑
d⊆∆

∑
γ∈Γ

ηdγ(x∆)xγ

−1

2

∑
d⊆∆

∑
γ,µ∈Γ

ψdµγ(x∆)xγxµ

}
,

(7)

where ωfγdm(yΦ|x∆) is the γ element of the vector ωfdm(yΦ|x∆). Without loss of gen-

erality we can assume that βfcd(yΦ|x∆) = ωfγdm(yΦ|x∆) = 0 if f = ∅. Any interaction

term that is not a function of yΦ will cancel with the normalizing function αΦ(x).

The the response model in the DR distribution intersects the class of CG regression

distributions given by Lauritzen and Wermuth (1989). That is to say, if we restrict the

DR distribution to contain only quadratic power terms as well as only first and second

order interaction terms for the continuous variables, we obtain a CG regression for a

purely discrete response. While these restrictions include a wide range of useful models,
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we find the restriction unnecessarily confining. So, we propose the DR model as a more

flexible model for purely discrete response variables.

4.2 Markov Properties of the DR Distribution

In order to make inference concerning the conditional independence of variables in discrete

regressions, we need to determine the Markov properties of the DR chain model. So, we

provide the following proposition.

Proposition 4.1. A DR distribution is Markovian with respect to a chain graph G, with

terminal chain component ∆ and initial component Γ ∪ Φ, if and only if the interaction

terms in (7) satisfy

βfcd(yΦ|x∆) ≡ 0 unless f ∪ c ∪ d is complete in G,

ωfγdm(yΦ|x∆) ≡ 0 unless f ∪ {γ} ∪ d is complete in G,

and

λd(x∆) ≡ 0 unless d is complete in G,

ηdγ(x∆) ≡ 0 unless d ∪ {γ} is complete in G,

ψdµγ(x∆) ≡ 0 unless d ∪ {µ, γ} is complete in G.

Proof. In order to prove Proposition 4.1 we will give a specialized version of the proof

of the Hammersley-Clifford Theorem (Appendix A) for the factorization of each of the

chain components so that Theorem 2.1 (iii) is satisfied.

We need only be concerned with the terminal chain component Φ. Lauritzen and

Wermuth (1989) prove that the conditions concerning the interaction terms of the CG

density are necessary and sufficient for the initial chain component to factorize according

to GΓ∪∆ = (GΓ∪∆)m.

Suppose that the interaction terms βfcd(yΦ|x∆) and ωfγdm(yΦ|x∆), m = 1, . . . ,M

are equal to zero for all subsets f ∪c∪d and f ∪{γ}∪d that are not complete. Then, it is

easy to observe that p(yΦ|x) factorizes according to complete sets in Gm
cl(Φ), since p(yΦ|x)

is a function only of complete factors in Gm
cl(Φ). Since the density p(yΦ|x) factorizes
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according to complete sets in Gm
cl(φ), it factorizes according to the cliques by Proposition

2.1.

Now, suppose that the DR distribution is Markovian with respect to G. Then, for

f ⊆ Φ, c ⊆ Γ, and d ⊆ ∆, the interaction term

φf∪c∪d(yΦ,x) =
∑
e⊆f

∑
b⊆c

∑
a⊆d

(−1)|e\f |+|c\b|+|d\a| log f(ye,y
∗
Φ\e,xb,0

∗
Γ\b,xa, x

∗
∆\a)

= 0

(8)

if the DR distribution is Markov and d∪ c∪f is not complete in G (Appendix A). There-

fore, we only need to show that φf∪c∪d(yΦ,x) ≡ 0 ⇒ βfcd(yΦ|x∆) = ωfγdm(yΦ|x∆) = 0

for m = 1, . . . ,M.

Through use of the Möbius inversion theorem and Lemma 4.1, calculation of the

Hammersley-Clifford interaction terms are as follows for d 6= ∅,

φf∪c∪d(yΦ,x)

=
∑
e⊆f

∑
b⊆c

∑
a⊆d

(−1)|e\f |+|c\b|+|d\a| log f(ye,y
∗
Φ\e,xb,0

∗
Γ\b,xa, x

∗
∆\a)

=
∑
b⊆c

(−1)|c\b|
∑
e⊆f

∑
a⊆d

(−1)|d\a|+|f\e|

[∑
a⊆d

∑
b⊆c

∑
e⊆f

βeba(yΦ|x∆)
∏
γ∈b

xγ

+
∑
a⊆d

∑
e⊆f

∑
γ∈b

m∑
j=2

ωeγam(yΦ|x∆)xm
γ

]

=
∑
b⊆c

(−1)|c\b|

[
βdbf (yΦ|x∆)

∏
γ∈b

xγ +
∑
γ∈b

M∑
m=2

ωfγdm(yΦ|x∆)xj
γ

]

= βfcd(yΦ|x∆)
∏
γ∈c

xγ +
∑
γ∈c

M∑
m=2

ωfγdm(yΦ|x∆)xγ

∑
b⊆c

(−1)|c\b|1[γ∈b]

= βfcd(yΦ|x∆)
∏
γ∈c

xγ +
∑
γ∈c

M∑
m=2

ωfγdm(yΦ|x∆)xγ

∑
b⊆c\γ

(−1)|[c\γ]\b|

= βfcd(yΦ|x∆)
∏
γ∈c

xγ +
m∑

j=2

ωfγdm(yΦ|x∆)xγ1[c={γ}]

(9)

If c = {γ} then the interaction term φd∪c∪f (yΦ,x) is a polynomial of order M in xγ with

coefficients ωfγd2(yΦ|x∆), . . . , ωfγdM(yΦ|x∆), and βfcd(yΦ|x∆). Therefore, we have that

φd∪c∪f (yΦ,x) = 0 for any x implies that βfcd(yΦ|x∆) and ωfγdm(yΦ|x∆), m = 1, . . . ,M,
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must be zero. If |c| ≥ 2, then we have the single interaction βfcd(yΦ|x∆)
∏

γ∈c xγ which

equals zero if φd∪c∪f (yΦ,x) = 0.

5 Random effects discrete regression

In Section 4.1 we describe a model for a single randomly sampled site. Now, we will

extend this model to account for possibly hundreds of randomly selected sites. Here, we

are constructing a model for multidimensional contingency table data collected at many

sites. For each site, a separate graphical model could be constructed, but this would

increase the number of parameters to be estimated to an unmanageable level. Therefore,

we propose a global graphical model for all sites that allows site-to-site flexibility. In order

to add this flexibility, as well as model the randomness in site selection, we introduce a

random error term to the response portion of the DR model in (7). In addition, through

the use of the DR framework we can include site specific covariates to the contingency

table model, obtaining a chain model for each site.

5.1 Random effects model construction

The addition of a random effect to the response model (7) produces a full model for YΦ,

X, and the random effects ε of the form

p(yΦ,x, ε) = pRE(yΦ|x, ε)pCG(x)p(ε). (10)

Since there is usually only one observation of the explanatory variables per site, we will

leave the model for the covariates, pCG(x), as it is given in (7). The response portion

pRE(yΦ|x, ε) of the random effects Discrete Regression (REDR) model is modified by the

addition of a random intercept term to give,

pRE(yΦ|x, ε) = exp

{
αΦ(x) +

∑
f⊆Φ

∑
c⊆Γ

∑
d⊆∆

βfcd(yΦ,x∆)
∏
γ∈c

xγ

+
∑
f⊆Φ

∑
γ∈Γ

∑
d⊆∆

M∑
m=2

ωfγdm(yΦ,x∆)xm
γ +

∑
f⊆Φ

εf (yΦ)

}
,

(11)
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where εf (yΦ) = 0, if yφ = y∗φ for any φ ∈ f , to ensure identifiability. In order to

allow modeling of a given independence structure for the multi-way response, we also

introduce one other constraint on the random effects. If f is not complete in the graphical

representation of the desired independence structure, then all of the random effect terms

in εf (yΦ) are defined to be 0 for all cells yΦ. The remaining random interactions εf =

{εf (yΦ) : yφ 6= y∗φ for any φ ∈ f}, for f complete in the graphical representation of the

desired independence structure, are given a multivariate distribution with mean 0 and

covariance (or scale parameter) Σf . For now, we will consider each of the random effects

vectors as being independently distributed. We will show, however, that this restriction

can be relaxed to some degree.

The introduction of random error terms in the manner given in (11) has three

benefits. First, the model can adjust for site-to-site variability. Secondly, the model will

automatically add some level of overdispersion to cell counts. Finally, every realization

of the collection of random effects provides cell probabilities that maintain the desired

independence relationships among the response variable, as well as between the response

variables and the site covariates. To see this one can simply calculate the Hammersley-

Clifford interaction terms described in Appendix A and illustrated for DR models in the

proof of Proposition 4.1. For each realization of the random effects in (11), all of the

interaction terms will remain the same as those calculated in Proposition 4.1, except

φf∪∅∪∅(yΦ,x∆) = βf∅∅(yΦ) + εf (yΦ). Therefore, since εf (yΦ) is set to zero for sets f that

are not complete in the graphical representation of the desired independence structure,

the cell probabilities will factor according to that structure with probability 1.

In the REDR model description we have left the error distribution vague. We be-

lieve that different situations may necessitate different error structures. If it is reasonable

to assume that the error structure is symmetric with few outliers, then a multivariate

normal (MVN) distribution may be reasonable. In this case, the cell compositions will

have a logistic normal (LN) distribution (Aitchison and Shen, 1980). However, other

distributions could be used. For example a multivariate t distribution with k degrees of

freedom could be used if it is desirable to have an error with heavier tails. It may be

desirable to use the t errors instead of normal errors if there is a high level of overdis-
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persion in the cell counts. For the remaining discussion of the random effects DR model

we will assume a MVN distribution for the random effects (i.e., p(εf ) = pN(εf ; 0,Σf ));

however, the theoretical results will remain the same for the t error model.

5.2 Likelihood formulation for multiple site sampling

The likelihood model for the multiple site sampling scheme is slightly different than the

standard likelihood for mixed variable graphical models. For each site i = 1, . . . , S, Ni

individuals are sampled, while the explanatory variables are sampled only once. There-

fore, the likelihood model for the response variable cell counts c given the covariates x,

the total number of individuals observed at a site, and the random effects is

pM(c|x, ε) =
N !∏

yΦ
c(yΦ)!

∏
yΦ

pRE(yΦ|x, ε)c(yΦ), (12)

where fRE(yΦ|x, ε) is given by (11).

Now, we focus on the multiple site likelihood for the explanatory variables. As-

suming that the covariate observations are independently distributed and follow a CG

distribution, we obtain the multiple site explanatory density

p(x1, . . . ,xS) =
S∏

i=1

pCG(xi|λ,η,Ψ), (13)

where xi denotes the set of observed covariates for i = 1, . . . , S and λ η, and Ψ represent

the collected parameter sets {λd(x∆) : d ⊆ ∆}, {λd(x∆) : d ⊆ ∆}, {ηd(x∆) : d ⊆ ∆},

{Ψd(x∆) : d ⊆ ∆}.

We now re-parameterize the homogeneous CG density in (13) into a more useful

form. First, we break the CG density into a marginal model for the categorical compo-

nents of the explanatory variable set and a conditional model for the continuous compo-

nents. We then re-parameterize the conditional Gaussian distribution into an ANOVA

like form. This re-parameterization gives the following form for the homogeneous CG



RANDOM EFFECTS GRAPHICAL MODELS 20

density,

pCG(x) = p(x∆)p(xΓ|x∆)

= exp

{∑
d⊆∆

λd(x∆)

}
× 1√

2π
|Ψ|−1/2

× exp

{
−1

2

(
xΓ −

∑
d⊆∆

τ d(x∆)

)′

Ψ

(
xΓ −

∑
d⊆∆

τ d(x∆)

)}
,

(14)

where Ψ =
∑

d⊆∆ Ψd(x∆) now represents the inverse covariance matrix for the continuous

variables, which have a MVN distribution, τ d(x∆) = Ψ−1ηd(x∆), and λ∅(x∆) represents

a normalizing constant in the log-linear model for x∆.

Define the vector of cell counts c∆ = [c(x∆)], where c(x∆) is the number of sites

for which the categorical covariates X∆ = x∆. Using the re-parameterization of the CG

density in (14) we can write the joint density of the covariates over all sites (13) as

p(x1, . . . ,xS) =

{
S∏

i=1

p(x∆i)

}
×

{
S∏

i=1

p(xΓi|x∆i)

}

∝ pM(c∆|λ)
S∏

i=1

pN

(
xΓi;

∑
d⊆∆

τd(x∆i), Ψ−1

)
,

(15)

where the explanatory observation at the ith site is given by xi = (x∆i,xΓi) and pM(c∆|λ)

is the multinomial density

pM(c∆|λ) =
S!∏

x∆
c(x∆)!

∏
x∆

exp

{∑
d⊆∆

λd(x∆)

}c(x∆)

. (16)

The full likelihood for parameter estimation in the REDR model (10) is obtained

by combining the likelihood for response variable cell counts at each site (12), the random

effects density, and the explanatory variable likelihood (13).

p ({ci}, {xi}, {εi}) =
S∏

i=1

pM(ci|xi, εi)pCG(xi)pN(εi)

∝
S∏

i=1

pM(ci|xi)pM(c∆|λ)×
S∏

i=1

pN

(
xΓi;

∑
d⊆∆

τd(x∆i), Ψ∅

)

×
S∏

i=1

∏
f⊆Φ

pN (εf,i; 0,Σf ) ,

(17)
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where ci is a D vector of response variable cell counts for site i, xi is a vector of observed

covariates, c∆ is a vector of cell counts for the categorical covariates, and εi represents

the collection of random effects vectors {εf,i : f ⊆ Φ and f complete} for the ith site. It

should be noted that all of the random effects vectors for a given site εf,i are modeled as

independent random variables in (17). This can be relaxed to some degree and will be

discussed in Section 6.2.

6 Markov Properties of REDR Models

Now that we have defined the Random Effects DR (REDR) model (10), it is of interest to

know what conditions determine the Markov properties of this distribution. In addition,

it is also of interest to determine how these properties change when the distribution is

marginalized over the random effects.

6.1 Extended chain graph

So, we begin with the first question. What conditions determine the Markov properties

of the complete REDR distribution. One can observe from (11) that the random effects

have exactly the same mathematical effect on the response as the interaction terms of the

observed covariates. Therefore, we define an extended chain graph Gε where the random

effects are included as parents of the response variables and are marginally independent

of the observed covariates. The graph is represented by a set of vertices for the observ-

able covariates and a set of vertices for the random effects and a set of vertices for the

response variables. There are directed edges from observable covariates to the response.

There are undirected edges between the response variables as well, depending on their

conditional dependence structure. Also, for each f ⊆∈ Φ there is a directed edge from

εf to yφ for every φ ∈ f . Here, the εf vertices represent a vector instead of a single

random variable. While, this is generally not how a Markov random field is represented

by a graph, the theoretical results will remain the same if we represent each element of

εf with a separate vertex. For ease of notation, we choose the former graphical repre-

sentation. The random effects are marginally independent of the observed covariates,
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Figure 1: Example of an extended graph Gε for random effects Discrete Regression models. Here, (a)

represents an extended graph for two response vertices that are connected, therefore, ε1, ε2, and ε1,2

are all parents of Φ and (b) is an example of an extended graph for vertices in Φ that are unconnected,

therefore, only ε1 and ε2 are parents of Φ. In, (b), by definition, ε{1,2} is defined to be a zero vector.

hence, there are no edges between the covariates and the random effects. Figure 1 gives

an illustration of two possible extended graphs for a two variable response vector, (a) one

where both components of Φ are connected, and (b) one where the components of Φ are

not connected. In addition, for now we will consider each εf , f ⊆ Φ to be independently

distributed, so, there are no edges between the random effects. As mentioned earlier this

will be relaxed to some degree at a later point.

We now provide a proposition that describes necessary and sufficient conditions

for a REDR distribution to be Markovian with respect to a given extended graph Gε.

Proposition 6.1. A REDR distribution P, given by (10) is Gε Markovian for a given

extended chain graph Gε, if and only if the interaction terms and random effects in (10)

satisfy the following conditions where f ⊆ Φ, c ⊆ Γ, and d ⊆ ∆:

1. (a) βfcd(yΦ,x∆) ≡ 0 in (11) unless f ∪ c ∪ d is complete in Gε for c, d 6= ∅,,

(b) ωfγdm(yΦ,x∆) ≡ 0 in (11), for m = 1, . . . ,M , unless f ∪{γ}∪ d is complete in

Gε,

(c) εf (yΦ) = −βf∅∅(yΦ) in (11), with probability 1, for all cells yΦ if f is not

complete in Gε.

2. (a) λd(x∆) ≡ 0 in (14) unless d is complete in Gε,
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(b) τdγ(x∆) ≡ 0 unless d ∪ {γ} is complete in Gε, where τdγ(x∆) is the element of

the vector τ d(x∆) in (14) associated with Xγ and γ ∈ Γ,

(c) ψdγµ ≡ 0 unless d∪µ∪γ} is complete in Gε, where ψdγµ is the (µ, γ) off-diagonal

element of Ψd(x∆) in (14) and µ ∈ Γ.

Proof. To prove Proposition 6.1 we will show that the conditions presented are necessary

and sufficient for a REDR model P (10) to have Gibbs factorization with respect to Gε

according to Proposition 2.1 and hence show that P is Gε Markovian.

Upon examination of the second set of conditions 2(a) through 2(c), one can

observe that they are necessary and sufficient for factorization of the marginal den-

sity of X and ε on the subgraph (Gε){Γ∪∆∪ε}. The second set of conditions are es-

sentially a re-parameterization of the necessary and sufficient factorization criteria for

the CG density given by Lauritzen and Wermuth (1989). Conditions 2(a) - 2(c) sat-

isfy Proposition 2.1 for the initial chain component Γ ∪ ∆ ∪ ε. Since, the random

effects {εf : f ⊆ Φ} are marginally independent from each other and X by construc-

tion, p(x, ε) = pCG(x)
∏

f⊆Φ p(εf ) factors according to (Gε){Γ∪∆∪ε} if and only if pCG(x)

factorizes according to (Gε){Γ∪∆}.

Now, all we need to show is that pRE(yΦ|x, ε) factorizes according to complete

sets in {(Gε)cl(Φ)}m to complete the factorization of the REDR distribution P according

to Proposition 2.1. In order to show this we will follow a similar approach as in the

proof of Proposition 4.1. First, note that if conditions 1(a) though 1(c) hold, then P

is a function only of complete sets in {(Gε)cl(Φ)}m, since the parents of Φ are complete.

Now, if we calculate the Hammersley-Clifford interaction terms for the REDR model P

in the same manner as in the proof of Proposition 4.1 for the DR model, we see that the

interaction terms are identical except for φf∪∅∪∅(yΦ, ε) = βf∅∅(yΦ) + εf (yΦ). Now, if it is

assumed that P is Gε Markovian, then φf∪∅∪∅(yΦ, ε) = 0 for all values of yΦ and εf (yΦ).

Therefore, εf (yΦ) = −βf∅∅(yΦ) with probability 1.

The second question, how do the Markov properties change by marginalizing over

the random effects, is a more challenging question due to the fact that the model form

prohibits analytical integration. Unfortunately, independence relationships between the
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response variables are not generally preserved when marginalizing over all of the ran-

dom effects. In certain instances, the random effects can act as a mixing distribution.

Marginalizing over the random effects has the potential to destroy conditional indepen-

dencies between response variables. Some model structures, however, are “preservative”

in the sense that when one marginalizes over the random effects, the independence rela-

tionships between and within the covariates in Γ ∪∆ and responses in Φ are preserved.

These model structures are explored further in the next section.

6.2 Preservative REDR Models

There is a sizable class of models for which a specified independence structure is guaran-

teed to be preserved when integrating the multi-way REDR density (10) over the random

effects in (11). We term this class of models preservative due to this property. The class

of preservative REDR graphs is defined by the following two conditions,

(1) All connected components aq, q = 1, . . . , Q, of Φ in Gε are complete, where Q

represents the number of connected components in Φ,

and

(2) Any δ ∈ Γ∪∆ that is a parent of φ ∈ aq is also a parent of every other φ ∈ aq, q =

1, . . . , Q.

Formulation of REDR models in this fashion essentially allows the vector variables

Yaq , q = 1, . . . , Q, to function as a single unit when examining independence relation-

ships.

Some useful independence models are members of the class of preservative REDR

models. The first, obviously, is the completely saturated model, where all of the members

of Φ are connected and complete and any parents of Φ are parents of every member. This

does not mean that all covariates must be parents of every response variable, only that

those covariates that are parents must be parents to every response variable. Another

useful set of models is the completely independent response model. If all responses are

conditionally independent of one another, then there is no restriction on the covariates as

to whom they must be parents of in order to preserve response conditional independence.
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6.3 Markov Properties of Preservative REDR Models

Now, we will demonstrate that if the conditions of Proposition 6.1 are satisfied for a

REDR model with respect to a preservative extended graph Gε, then the marginal dis-

tribution (YΦ, X) is G = (Gε)V \ε Markovian. Therefore, when interest lies only in the

inference of dependence relationships between and within the covariates and response,

the random effects can simply be ignored in the graphical representation.

Proposition 6.2. If P is an REDR model as described in Section 5.1, and P is Marko-

vian with respect to a preservative, extended graph Gε, then the marginal distribution of

the covariates and responses, PΦ∪Γ∪∆, is G = (Gε)V \ε Markovian.

Proof. By construction, the random effects are a chain simplicial set in Gε. Therefore,

by Theorem 3.1, if P is Gε Markovian then, (YΦ, X) is G = (Gε)V \ε Markovian.

In the situation where the model of interest is not a preservative model, integra-

tion over the random effects can still be carried out. Any REDR model is Markovian

with respect to a “preservative” graph. All that needs to be done is to create a graph

from the graph Gε for which the non-preservative model is Markovian by completing all

connected response variable components and adding a directed edge from every parent

of a connected response component to every other member of that component. Since we

are adding edges, the original REDR model will be Markovian with respect to this new

supplemental graph, since it will still factorize according to complete vertex sets. We can

then proceed as shown in the proof.

It is possible to generalize the REDR model to allow some degree of association

between the random effects for preservative models. In the proof of Proposition 6.2 we

used the fact that the random effects vectors were independent from one another. Upon

examination of the proof, however, it can be observed that if elements of εf and εf ′ are

correlated for each f and f ′ ⊆ aq, then the results will remain the same. We can therefore

marginalize over random effects that are correlated, and still preserve the associations

between the responses and covariates, if all of the correlation occurs between random

effects associated with the same complete response component in a preservative model.
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7 Conclusions

We have presented an analysis of the Markov properties for a broad class of models

for spatially variable graphical models. The models allow modeling of multiple discrete

response data sampled at many sites. Site to site variation in cell probabilities can be in-

cluded without a large increase in the number of parameters to estimate. In addition, site

level covariates can be included in the model and inference made between the covariates

and response through the conditional independence relationships of a graphical associa-

tion model. In order to examine the conditional independencies of the marginal model,

we provide some results concerning marginalization in chain graph models. These results

represent generalizations to the results for undirected graph models given by Frydenberg

(1990b).

An obvious extension to the work presented here is to expand the ideas presented

here to account for spatial dependencies. Such work will provide insight into spatial

graphical models for contingency table data. One possible approach is to consider a

super graphical model. The super interaction graph is constructed by constructing an

extended independence graph for each site, then the random effects are connected by a

model such as a lattice spatial model. One could analyze the properties of this giant

graphical model. This approach is similar to the methodology proposed by Fienberg and

Kim (1999) for combining log-linear graphical models. This is essentially the task we

are performing by integrating a spatial process(es) as part of the state-space model. A

graphical model describing spatial between site relationships of the random effects and

covariates is combined with a graphical model for the random effects, covariates, and

response variables within each site. Therefore, this methodology provides promise for

either lattice or continuous spatial models.

Dahlhaus (2000) and Fried and Didelez (2003) provide a methodology for analyzing

graphical models for multivariate Gaussian data collected in a vector time series. When

data are collected as a time series, the spectral matrix of the vector process plays the same

role as the inverse correlation matrix. These same spectral methods may be extended to

analyze spatial models within a discrete regression framework.
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Studený, M. and Bouckaert, R. R. (1998). On chain graph models for description of conditional inde-

pendence. The Annals of Statistics, 26:1434–1495.

Tian, J. and Pearl, J. (2002). On testable implications of causal models with hidden variables. Uncer-

tainty in Artificial Intelligence, Proceedings, 18:574–579.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, Chichster.

A Appendix: Hammersly-Clifford Theorem

Below we present the Hammersley-Clifford Theorem and a sketch of the proof. First,

provide a lemma that is used in the proof of the theorem.

Lemma A.1 (Möbius inversion). For two real valued functions, g and h, defined on

the set of all subsets of a finite set V we have that the following two statements are

equivalent

(1) for all a ⊆ V : g(a) =
∑

b⊆a h(b);

(2) for all a ⊆ V : h(a) =
∑

b⊆a(−1)|a\b|g(b),

where |a| represents the cardinality of the set a.
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Theorem A.1 (Hammersley-Clifford). A probability distribution P with positive and

continuous density f with respect to a product measure µ satisfies the pairwise Markov

property (UP) with respect to an undirected graph G if and only if it has Gibbs factoriza-

tion (F) according to G.

Proof. Here we present a sketch of the proof given by Lauritzen (1996, pg. 36). First, it

is fairly simple to show that (F) ⇒ (UP), therefore, we will concentrate on the necessity

portion of the proof. Now, assume that P is pairwise Markov with respect to G. Since

f is assumed positive, we will work with the log density. The definition of (F) can be

written according to the log density as

log f(x) =
∑
a⊆V

φa(x),

where φa(x) depends on x only through xa and φa(x) ≡ 0 unless a is complete is a

compete subset of V .

First, assume that P possesses (UP) and choose a fixed but arbitrary element x∗

of X . For all a ⊆ V define,

Ha(x) = log f(xa,x
∗
ac),

where (xa,x
∗
ac) is the element y of X such that yγ = xγ for γ ∈ a and yγ = x∗γ for γ 6∈ a.

Since x∗ is fixed, Ha(x) depends on x only through xa. Now, for all a ⊆ V , define the

interaction term

φa(x) =
∑
b⊆a

(−1)|a\b|Hb(x), (18)

where |a| represents the cardinality of the set a. Next, using Möbius inversion (Lemma

A.1) the log density of P can be rewritten as

log f(x) = HV (x) =
∑
a⊆V

φa(x),

It can be observed that φa(x) depends only on the components in x denoted by the subset

a. Thus, it only needs to be shown that φa(x) = 0 whenever a is not a complete subset

of V .
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Choose α ∈ a and β ∈ a such that α 6∼ β. Now, letting c = V \{α, β} and using

the shorthand notation Ha = Ha(x), we have

φa(x) =
∑
b⊆c

(−1)|c\b|
{
Hb −Hb∪{α} −Hb∪{β} +Hb∪{α,β}

}
Using the definition of Ha(x) it can be shown that all of the terms in the curly brackets

add to zero, hence φa(x) = 0 if there are members of a that are not complete in G and

P possesses (UP). Therefore, (UP) =⇒ (F).


