
Methodology for Bayesian Model Averaging: An Update

Jennifer A. Hoeting∗

Colorado State University

Abstract

The standard practice of selecting a single model from some class of models and then making
inferences based on this model ignores model uncertainty. Ignoring model uncertainty can im-
pair predictive performance and lead to overstatement of the strength of evidence via p-values
that are too small. Bayesian model averaging provides a coherent approach for accounting for
model uncertainty. A variety of methods for implementing Bayesian model averaging have been
developed. A brief overview of Bayesian model averaging is provided and recently developed
methodology to perform Bayesian model averaging in specific model classes is described. Liter-
ature references as well as software descriptions and relevant webpage addresses are provided.

1 Introduction

Chronic wasting disease of the deer family has recently garnered daily headlines in newspapers in
the state of Colorado. The disease is a member of a group of infectious diseases known as prion
diseases which affect animals and humans. “Mad-cow” disease is one of the most widely known
prion diseases and scientists are hopeful that the study of chronic wasting disease will increase
understanding of this and other prion diseases.

Scientists would like to determine the prevalence of the disease in Colorado and are considering
predictors of disease prevalence such as population density, habitat and other potentially related
covariates. One concern about the study of prevalence is that the currently available data are
generally from hunter returns where hunters bring in samples of harvested deer for testing. While
this allows scientists to map disease prevalence around the state, the data are clearly subject to
biases related to this non-random sampling.

Classical statistical theory relies on the notion of repeatability of an experiment. This is not
always possible with ecological studies such as chronic wasting disease. Indeed, scientists are often
pressed for early answers to questions, such as the prevalence of chronic wasting disease, without
time or funding to perform experimental studies. In many situations, experimental manipulation
of relevant factors is impossible.

For many of these problems, the typical data analysis approach is to select a set of predictors
or risk factors and make inferences using this single model. A serious shortcoming this approach
is the dependence of the inferences on the set of predictors selected for inclusion in the model.
For example, it is quite possible that two different subsets of predictors of chronic wasting disease
prevalence will fit the data well and provide sensible inferences. Without experimental modification
of specific factors, it is impossible to specify the correct model. Similar arguments may be reasonable
for certain experimental studies. In either case, choosing one model and basing inference on this
single model ignores the uncertainty in the model selection.
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Bayesian model averaging allows for the incorporation of model uncertainty into inference. The
basic idea of Bayesian model averaging is to make inferences based on a weighted average over
model space. This approach accounts for model uncertainty in both predictions and parameter
estimates. The resulting estimates of uncertainty incorporate model uncertainty and thus may
be better reflect the true uncertainty in the estimates. This paper provides a brief overview of
Bayesian model averaging and some of the recently developed methodology to implement Bayesian
model averaging for specific model classes.

2 Bayesian Model Averaging

Let M = (M1, . . . ,MK) be the set of models under consideration. A model may be defined by a
variety of attributes such as the subset of explanatory variables in the model or the form of the
error variance. If ∆ is the quantity of interest, such as a future observable or a model parameter,
then the posterior distribution of ∆ given data Z is:

p (∆ |Z ) =
K∑
k=1

p (∆ |Z,Mk ) p (Mk |Z ) , (1)

This is an average of the posterior predictive distribution for ∆ under each of the models considered,
weighted by the corresponding posterior model probability. The posterior probability for model
Mk is given by

p(Mk|Z) =
p(Z|Mk)p(Mk)∑K
l=1 p(Z|Ml)p(Ml)

, (2)

where
p (Z |Mk ) =

∫
· · ·
∫
p (Z |θk,Mk ) p (θk |Mk ) dθk (3)

is the integrated likelihood of model Mk, θk is the vector of parameters of model Mk, p (θk |Mk ) is
the prior density of the parameters under model Mk, p (Z |θk,Mk ) is the likelihood, and p(Mk) is
the prior probability that Mk is the true model. All probabilities are implicitly conditional on M,
the set of all models being considered.

Parameter estimates and other quantities of interest are provided via straightforward application
of the principles described above. For example, the Bayesian model averaging (BMA) estimate of
a parameter θ is

θ̂BMA =
K∑
k=1

θ̂kp (Mk |Z )

where θ̂k denotes the posterior mean for model k. Variances of these estimates and other quantities
are also available (e.g., Hoeting et al. 1999 and Viallefont et al. 2001).

There are many challenges involved in the implementation of Bayesian model averaging (BMA),
including the computation of (1) for a very large number of models, the evaluation of the integrals
implicit in (3) which do not typically exist in closed form, and the specification of the prior model
probabilities p(Mk).

A number of researchers have considered the problem of managing the summation in equation (1)
for a large number of models, some of which are described below for specific areas of application. A
popular approach is to explore the space of models stochastically via a Markov chain Monte Carlo
approach (e.g., George and McCulloch, 1997 and Raftery, Madigan, and Hoeting, 1997). Clyde
(1999a; 1999b) shows that many of these approaches are a special case of reversible jump MCMC
algorithms (Green, 1995). Clyde (1999a) and Dellaportas, Forster and Ntzoufras (2002) review
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model search and averaging algorithms. Godsill (2001) proposes a composite representation for
model uncertainty problems which includes many of these Markov chain Monte Carlo approaches
as special cases. This and other recent advances, such as implementation of perfect sampling, show
promise in this area.

Hoeting, Madigan, Raftery, Volinsky (1999) discuss the historical development of BMA, provide
additional description of the challenges of carrying out BMA, and describe some solutions to these
problems for a variety of model classes. The next section provides a brief overview of some of the
methodology that was described in that paper and describes more recent work in this area.

3 Bayesian Model Averaging for Specific Model Classes

The development of methodology to carry out model averaging is a rapidly growing area. In the
last two years more than 60 papers related to model averaging have appeared in the peer reviewed
literature. As this body of literature continues to increase, it is a daunting challenge to present a
review of methodology to implement Bayesian model averaging. Below is a annotated bibliography
of some of the available methodology for specific classes of models. Software to implement these
procedures, when available, is described. All of the programs listed below are free of charge and
internet addresses are provided. Many of these programs are available at the “Bayesian model
averaging home page” (www.research.att.com/∼volinsky/bma.html).

3.1 Linear Regression Models

The selection of subsets of predictor variables is a fundamental issue in linear regression modeling.
Several approaches have been developed to average over all possible sets of predictors. Raftery,
Madigan, and Hoeting (1997) provide a closed form expression for the likelihood in this context
(equation 3) and an extensive discussion of hyperparameter choice in the situation where little prior
information is available. Fernández, Ley, and Steele (1997; 2001a) and Liang, Troung and Wong
(2001) offer alternative prior structures aiming at a more automatic choice of hyperparameters.

Raftery et al. (1997) also develop approaches to overcoming the challenges of averaging over a
large number of possible models in the context of linear regression models. They develop a Markov
chain Monte Carlo (MCMC) approach and a more heuristic procedure. Other researchers have also
considered this problem. See Clyde (1999a) for a review.

Hoeting, Raftery and Madigan (1996; 2002a) extend the BMA framework of averaging over
subsets of predictors to account for uncertainty in the selection of transformations and identification
of outliers in regression models.

Software: The programs listed below are written in S-Plus c© and are available at
www.research.att.com/∼volinsky/bma.html.

1. bicreg uses a Bayesian information criterion (BIC) approximation to perform Bayesian model
selection and accounting for model uncertainty in linear regression models [Written by A.E.
Raftery].

2. BMA implements BMA for linear regression models via the Markov chain Monte Carlo model
model composition (MC3) algorithm [Written by J.A. Hoeting].

3.2 Nonparametric Regression Models

An active area of research has been the development of methodology for nonparameteric regression
models, including model averaging for nonparametric models. Shively, Kohn, and Wood (1999)
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develop methodology for additive nonparametric Gaussian and binary regression models. Posterior
means of the regression functions are averaged across all possible models. The authors demonstrate
that this approach can produce better estimates of the regression functions as compared to estimates
that assume that all functions should be included in the model. A related approach is described in
Lamon and Clyde (2000). Gustafson (2000) offers an alternative spline-based approach and Liang
et al. (2001) develop an automatric prior set-up for curve ftting with regression splines.

Holmes and Mallick (2001) develop methodology for model averaged predictive distributions for
a piecewise linear model constructed using basis functions. Their approach accounts for uncertainty
in both the number and the locations of the splines.

3.3 Spatial Models

Stochastic models for spatial prediction are becoming increasingly important as the cost of collecting
spatially referenced data continues to decrease. When the goal is prediction and the data are
collected from spatially irregular locations, a typical approach is to assume that the response
of interest is a realization of a Gaussian random field which can be described by a function of
distance, direction between two sample locations, and, possibly, regression covariates. In this
context, geostatistical methods such as universal kriging (Cressie, 1993, Chapter 3) are often used
to produce predictions for a Gaussian random field.

An attractive alternative to standard kriging methods is a Bayesian approach for spatial predic-
tion (see Gaudard et al., 1999, Handcock and Stein, 1993, and the references therein). The Bayesian
approach has the advantage that inferences and predictions fully include parameter uncertainty.
De Oliverira et al. (1997) show that ignoring the uncertainty associated with specification of the
parameters in a normalizing transformation for Gaussian random fields can lead to over-confident
prediction intervals. Sun (1998) also demonstrates the perils of ignoring parameter uncertainty in
a comparison of cokriging with a Bayesian alternative.

In addition to parameter uncertainty, there are other components to model uncertainty in spatial
prediction. It is common practice in both standard and Bayesian kriging to first select the form of
the model (including selecting the regression covariates, the form of the regression function and the
autocorrelation function) and then make inferences assuming that the selected model is the “true”
model. This ignores uncertainty due to model selection.

Thompson (2001) and Hoeting, Thompson and Davis (2002b) adopt a Bayesian approach for
spatial prediction and develop methodology for accounting for model uncertainty. Spatial predic-
tion via Bayesian model averaging accounts for the uncertainty associated with model selection
including the selection of explanatory variables, the form of the regression function, and the form
of the autocorrelation function. While Bayesian methods are often appealing, their solutions can be
computationally complex, particularly in the context of spatial models. The proposed methods re-
duce computational complexity while preserving many of the advantages of Bayesian methodology.
Thompson (2001) shows that averaging over all possible subsets of explanatory variables in spatial
models can lead to more accurate predictive coverage and smaller predictive errors as compared to
the standard practice of basing predictions on a single model.

3.4 Other Model Classes and Areas of Application

Generalized linear models: Uncertainty about the choice of the link function, the variance func-
tion as well as the explanatory variables all contribute to model uncertainty in the construction
of generalized linear models (McCullagh and Nelder, 1989). Raftery (1996) proposes method-
ology to approximate the quantities necessary to compute the posterior model probabilities

4



(equation 2) and carry out BMA in this context.

Clyde (2000) develops objective prior distributions for BMA in generalized linear models,
allowing for direct comparison of Bayesian model selection with standard methods such as
Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC). This approach
is used to investigate the impact of model uncertainty on inferences about the effect of par-
ticulate matter on mortality of the elderly.

Viallefont, Raftery and Richardson (2001) apply BMA for logistic regression models in the
context of case-control studies and the determination of significant risk factors. Via a simula-
tion study they show that p-values computed after traditional variable selection can greatly
overstate the strength of conclusions while BMA appears to alleviate this problem. They
demonstrate the approach on a case-control study investigating risk factors for cervical can-
cer and include careful description of the inferences available via BMA in this context.

Landrum and Becker (2001) develop a multiple imputation strategy for incomplete longi-
tudinal data. They use model averaging for pooling predictions across different statistical
models.

Software: The programs listed below are written in S-Plus c© and are available at
www.research.att.com/∼volinsky/bma.html.

1. bic.glm performs BMA for generalized linear models using the Leaps and Bounds algo-
rithm and the BIC approximation. [Written by C.T. Volinsky].

2. bic.logit performs Bayesian model selection and accounting for model uncertainty using
the BIC approximation for logistic regression models [Written by A.E. Raftery].

3. glib carries out Bayesian estimation, model comparison and accounting for model uncer-
tainty in generalized linear models, allowing user-specified prior distributions [Written
by A.E. Raftery].

Graphical Models: Graphical models can be used to summarize a set of conditional indepen-
dence statements. Madigan and York (1995) and York et al. (1995) describe methodology
to implement BMA for missing data and latent variable problems in the context of Bayesian
graphical models for discrete data. Andersson et al. (1997) show that a family of graphical
models can be partitioned into Markov-equivalence classes, where each class is associated with
a unique statistical model. Accounting for these relationships can reduce inefficiencies in com-
putational procedures for statistical inference. Madigan et al. (1996) apply these principles to
develop two stochastic algorithms to perform BMA for the analysis of discrete variable data.

Classification Models: Denison, Adams, Homes, and Hand (2002) compare several approaches
to Bayesian classification modeling via partitioning and describe BMA methodology in this
context. Model averaging and model uncertainty are also discussed in Chipman, George and
McCulloch (1998) in the development of a Bayesian algorithm for classification and regression
trees (CART).

Software: C++ software to perform Bayesian CART (Chipman et al., 1998) is available at
gsbwww.uchicago.edu/fac/robert.mcculloch/research/code.

Capture-recapture Models: A series of papers on Bayesian analysis of capture-recapture data
have recently appeared. Brooks, Catchpole and Morgan (2000) develop a Bayesian approach
to estimating parameters associated with animal survival. These same authors propose a
similar approach for analyzing ringing data in a more recent paper (Brooks et al., 2002).
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King and Brooks (2002) discuss model discrimination as well as model averaging for multiple
strata capture-recapture data.

Software: Brooks et al. (2000; 2002) include computer code to carry out the analyses. The
code is written in winBUGS, software for the Bayesian analysis of statistical models using
Markov chain Monte Carlo methods, which is available at no charge at
www.mrc-bsu.cam.ac.uk/bugs.

Survival Analysis: Volinsky et al. (1997) use BIC and other approximations to enable BMA and
the selection of explanatory variables for Cox proportional hazards models (Cox, 1972). To
manage the summation in equation (1), they develop a leaps and bounds algorithm related
to the algorithm developed by Furnival and Wilson (1974). The authors demonstrate the
methodology using data from the Cardiovascular Health Study to investigate the risk factors
for stroke.

Software: The S-plus c© program bic.surv performs BMA for proportional hazard models using
the BIC approximation. It is available at www.research.att.com/∼volinsky/bma.html.

Economic Applications: Early contributors on model averaging of forecasts includes Palm and
Zellner (1992) and Min and Zellner (1993). More recently, BMA is applied to economic
data in the analyses of consumer demand systems (Chua et al., 2001), cross-country growth
regressions (Fernández et al., 2001b), and option pricing (Bunnin et al., 2002).

4 Discussion

There are many other issues in the application of and philosophy behind Bayesian model averaging
that are not considered here such as specification of the prior model probabilities (p(Mk) in equation
2), averaging over more than one class of models, interpretation of the results, and model checking.
Some of these issues receive further treatment in Hoeting et al. (1999) and the comments therein by
D. Draper, E.I. George and M. Clyde. However, many of these are open areas for further research.

Bayesian model averaging offers a coherent approach to accounting for model uncertainty. BMA
has also been demonstrated to improve predictive performance (e.g., Hoeting et al. 1999) and to
avoid the problem of overstatement of the strength of evidence, a problem when p-values are
computed after traditional variable selection (Volinsky et al., 1997; Viallefont et al., 2001). It
should be emphasized, however, that BMA should not be used as an excuse for poor science or
to argue for the use of observational studies over experimental approaches. BMA is useful after
careful scientific analysis of the problem at hand. Indeed, BMA offers one more tool in the toolbox
of applied statisticians for improved data analysis and interpretation.
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