WinBUGS Example 1: Lip cancer

Consider the areal data disease mapping model:

\[Y_i \mid \mu_i \overset{\text{ind}}{\sim} Po \left(E_i \, e^{\mu_i} \right), \quad \text{where} \]
\[Y_i = \text{observed disease count}, \]
\[E_i = \text{expected count (known), and} \]
\[\mu_i = x_i' \beta + \theta_i + \phi_i \]
Consider the areal data disease mapping model:

\[Y_i \mid \mu_i \sim \text{Po} \left(E_i \, e^{\mu_i} \right) \]

where

- \(Y_i \) = observed disease count,
- \(E_i \) = expected count (known), and
- \(\mu_i = x_i' \beta + \theta_i + \phi_i \)

\(Y_i \) informs directly only about \(\xi_i \equiv \theta_i + \phi_i \)
Consider the areal data disease mapping model:

\[Y_i \mid \mu_i \overset{ind}{\sim} Po \left(E_i e^{\mu_i} \right), \quad \text{where} \]
\[Y_i = \text{observed disease count}, \]
\[E_i = \text{expected count (known), and} \]
\[\mu_i = x_i' \beta + \theta_i + \phi_i \]

\(Y_i \) informs directly only about \(\xi_i \equiv \theta_i + \phi_i \)

The \(x_i \) are explanatory spatial covariates; typically \(\beta \) has a flat prior.
WinBUGS Example 1: Lip cancer

Consider the areal data disease mapping model:

\[Y_i | \mu_i \overset{ind}{\sim} \text{Po}(E_i \, e^{\mu_i}) , \text{ where} \]
\[Y_i = \text{observed disease count}, \]
\[E_i = \text{expected count (known), and} \]
\[\mu_i = x_i' \beta + \theta_i + \phi_i \]

- \(Y_i \) informs directly only about \(\xi_i \equiv \theta_i + \phi_i \)
- The \(x_i \) are explanatory spatial covariates; typically \(\beta \) has a flat prior.
- The \(\theta_i \) capture heterogeneity among the regions via

\[\theta_i \overset{iid}{\sim} N(0, 1/\tau_h), \]
and the ϕ_i capture regional clustering via a conditionally autoregressive (CAR) prior,

$$
\phi_i \mid \phi_{j \neq i} \sim N(\bar{\phi}_i, \frac{1}{\tau c m_i})
$$

where $\bar{\phi}_i = m_i^{-1} \sum_{j \in \partial_i} \phi_j$, ∂_i is the set of “neighbors” of region i, and m_i is the number of these neighbors.
and the ϕ_i capture regional clustering via a conditionally autoregressive (CAR) prior,

$$
\phi_i \mid \phi_{j \neq i} \sim N(\bar{\phi}_i, 1/(\tau c m_i)),
$$

where $\bar{\phi}_i = m_i^{-1} \sum_{j \in \partial_i} \phi_j$, ∂_i is the set of “neighbors” of region i, and m_i is the number of these neighbors.

The CAR prior is translation invariant, so typically we insist $\sum_{i=1}^{I} \phi_i = 0$ (imposed numerically after each MCMC iteration).
WinBUGS Example 1: Lip cancer

- and the ϕ_i capture regional clustering via a conditionally autoregressive (CAR) prior,

$$\phi_i \mid \phi_{j \neq i} \sim N(\bar{\phi}_i, 1/(\tau c m_i)),$$

where $\bar{\phi}_i = m_i^{-1} \sum_{j \in \partial_i} \phi_j$, ∂_i is the set of “neighbors” of region i, and m_i is the number of these neighbors.

- The CAR prior is translation invariant, so typically we insist $\sum_{i=1}^{I} \phi_i = 0$ (imposed numerically after each MCMC iteration).

- Making the reparametrization from (θ, ϕ) to (θ, ξ), we have the joint posterior

$$p(\theta, \xi \mid y) \propto L(\xi; y)p(\theta)p(\xi - \theta).$$
This means that

\[p(\theta_i \mid \theta_j \neq i, \xi, y) \propto p(\theta_i) p(\xi_i - \theta_i \mid \{\xi_j - \theta_j\}_{j \neq i}) . \]

Since this distribution is free of the data \(y \), the \(\theta_i \) are Bayesianly unidentified (and so are the \(\phi_i \)).
WinBUGS Example 1: Lip cancer

This means that

\[p(\theta_i \mid \theta_{j \neq i}, \xi, y) \propto p(\theta_i) \, p(\xi_i - \theta_i \mid \{\xi_j - \theta_j\}_{j \neq i}) . \]

Since this distribution is free of the data \(y \), the \(\theta_i \) are Bayesianly unidentified (and so are the \(\phi_i \)).

\[\text{BUT: this does not preclude Bayesian learning about } \theta_i; \text{ this would instead require} \]

\[p(\theta_i \mid y) = p(\theta_i) . \]

[Stronger condition: data have no impact on the marginal (not conditional) posterior.]
Dilemma: Though unidentified, the θ_i and ϕ_i are interesting in their own right, as is

$$\alpha = \frac{sd(\phi)}{sd(\theta) + sd(\phi)},$$

where $sd(\cdot)$ is the empirical marginal standard deviation. Are there vague but proper prior values τ_h and τ_c that
Dilemma: Though unidentified, the θ_i and ϕ_i are interesting in their own right, as is

$$\alpha = \frac{sd(\phi)}{sd(\theta) + sd(\phi)},$$

where $sd(\cdot)$ is the empirical marginal standard deviation. Are there vague but proper prior values τ_h and τ_c that lead to acceptable convergence behavior, but
Dilemma: Though unidentified, the θ_i and ϕ_i are interesting in their own right, as is

$$\alpha = \frac{sd(\phi)}{sd(\theta) + sd(\phi)},$$

where $sd(\cdot)$ is the empirical marginal standard deviation. Are there vague but proper prior values τ_h and τ_c that

- lead to acceptable convergence behavior, but
- still allow Bayesian learning?
WinBUGS Example 1: Lip cancer

Dilemma: Though unidentified, the θ_i and ϕ_i are interesting in their own right, as is

$$\alpha = \frac{sd(\phi)}{sd(\theta) + sd(\phi)} ,$$

where $sd(\cdot)$ is the empirical marginal standard deviation. Are there vague but proper prior values τ_h and τ_c that lead to acceptable convergence behavior, but still allow Bayesian learning?

Tricky to specify a “fair” prior balance between heterogeneity and clustering (e.g., one for which $\alpha \approx 1/2$) since θ_i prior is specified marginally while the ϕ_i prior is specified conditionally!
WinBUGS Example 1: Lip cancer

⋆ left panel: \(\frac{100Y_i}{E_i} \) (SMR), where \(Y_i \) = observed and \(E_i \) = expected cases for \(I = 56 \) districts, 1975–1980
WinBUGS Example 1: Lip cancer

⋆ left panel: $100\frac{Y_i}{E_i}$ (SMR), where $Y_i =$ observed and $E_i =$ expected cases for $I = 56$ districts, 1975–1980

⋆ right panel: x_i, % of the population engaged in agriculture, fishing or forestry (AFF covariate)
WinBUGS Example 1: Lip cancer

☆ left panel: $100Y_i / E_i$ (SMR), where Y_i = observed and E_i = expected cases for $I = 56$ districts, 1975–1980

☆ right panel: x_i, % of the population engaged in agriculture, fishing or forestry (AFF covariate)

☆ we also have: a variety of vague, proper, and arguably “fair” priors for τ_c and τ_h
WinBUGS Example 1: Lip cancer

For actual WinBUGS code, see:
http://www.biostat.umn.edu/~brad/data/Lipsbrad.odc

Results:

AFF covariate appears significantly different from 0 under all 3 priors, although convergence is very slow
WinBUGS Example 1: Lip cancer

For actual WinBUGS code, see:
http://www.biostat.umn.edu/~brad/data/Lipsbrad.odc

Results:

- AFF covariate appears significantly different from 0 under all 3 priors, although convergence is very slow.
- Excess variability in the data is mostly due to clustering ($E(\alpha|y) > .50$), but the posterior distribution for α does not seem robust to changes in the prior.
WinBUGS Example 1: Lip cancer

For actual WinBUGS code, see: http://www.biostat.umn.edu/~brad/data/Lipsbrad.odc

Results:

- AFF covariate appears significantly different from 0 under all 3 priors, although convergence is very slow.
- Excess variability in the data is mostly due to clustering \(E(\alpha|y) > .50 \), but the posterior distribution for \(\alpha \) does not seem robust to changes in the prior.
- Convergence for the \(\xi_i \) (reasonably well-identified) is rapid; convergence for the \(\mu_i \) (not shown) is virtually immediate.
WinBUGS Example 1: Lip cancer

Posterior and MCMC convergence summaries:

<table>
<thead>
<tr>
<th>Priors for τ_c, τ_h</th>
<th>Posterior for α</th>
<th>Posterior for β</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
</tr>
<tr>
<td>G(1.0, 1.0), G(3.2761, 1.81)</td>
<td>.57</td>
<td>.058</td>
</tr>
<tr>
<td>G(.1, .1), G(.32761, .181)</td>
<td>.65</td>
<td>.073</td>
</tr>
<tr>
<td>G(.1, .1), G(.001, .001)</td>
<td>.82</td>
<td>.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priors for τ_c, τ_h</th>
<th>Posterior for ξ_1</th>
<th>Posterior for ξ_{56}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
</tr>
<tr>
<td>G(1.0, 1.0), G(3.2761, 1.81)</td>
<td>.92</td>
<td>.40</td>
</tr>
<tr>
<td>G(.1, .1), G(.32761, .181)</td>
<td>.89</td>
<td>.36</td>
</tr>
<tr>
<td>G(.1, .1), G(.001, .001)</td>
<td>.90</td>
<td>.34</td>
</tr>
</tbody>
</table>
WinBUGS Example 2: Home prices

Here we illustrate a non-Gaussian model for point-referenced spatial data:

Data: Observations are home values (based on recent real estate sales) at 50 locations in Baton Rouge, Louisiana, USA.
WinBUGS Example 2: Home prices

Here we illustrate a non-Gaussian model for point-referenced spatial data:

Data: Observations are home values (based on recent real estate sales) at 50 locations in Baton Rouge, Louisiana, USA.

The response $Y(s)$ is a binary variable, with

$$Y(s) = \begin{cases}
1 & \text{if price is “high” (above the median)} \\
0 & \text{if price is “low” (below the median)}
\end{cases}$$
WinBUGS Example 2: Home prices

Here we illustrate a non-Gaussian model for point-referenced spatial data:

- **Data:** Observations are home values (based on recent real estate sales) at 50 locations in Baton Rouge, Louisiana, USA.

- The response \(Y(s) \) is a **binary** variable, with

\[
Y(s) = \begin{cases}
1 & \text{if price is “high” (above the median)} \\
0 & \text{if price is “low” (below the median)}
\end{cases}
\]

- Observed covariates include the house’s **age** and total living area
WinBUGS Example 2: Home prices

We fit a generalized linear model where
\[Y(s_i) \sim Bernoulli(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i) \]
We fit a generalized linear model where
\[Y(s_i) \sim \text{Bernoulli}(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i) \beta + w(s_i) \]

Assume vague priors for \(\beta \), a Uniform\((0, 10)\) prior for \(\phi \), and an Inverse Gamma\((0.1, 0.1)\) prior for \(\sigma^2 \).
WinBUGS Example 2: Home prices

- We fit a generalized linear model where
 \[Y(s_i) \sim \text{Bernoulli}(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i) \]

- Assume vague priors for \(\beta \), a Uniform\((0, 10)\) prior for \(\phi \), and an Inverse Gamma\((0.1, 0.1)\) prior for \(\sigma^2 \).

- The WinBUGS code and data for this example are at www.biostat.umn.edu/~brad/data/BatonRougebinary.bug:

```
for (i in 1:N) {
    Y[i] ~ dbern(p[i])
    logit(p[i]) <- w[i]
for (i in 1:3) beta[i] ~ dnorm(0.0,0.001)
w[1:N] ~ spatial.exp(mu[], x[], y[], spat.prec, phi, 1)
phi ~ dunif(0.1,10)
spat.prec ~ dgamma(0.1, 0.1)
sigmasq <- 1/spat.prec
```
WinBUGS Example 2: Home prices

Use `image` and `contour` on w_i posterior medians in R
WinBUGS Example 2: Home prices

- Use `image` and `contour` on w_i posterior medians in R
- negative residuals (i.e., lower prices) in the north;
 positive residuals (i.e., higher prices) in the south
WinBUGS Example 2: Home prices

- Use `image` and `contour` on w_i posterior medians in R
- **negative** residuals (i.e., **lower** prices) in the north;
 positive residuals (i.e., **higher** prices) in the south
- smooth flat stretches across the central parts;
 downward slopes toward the north and southeast.
WinBUGS Example 2: Home prices

Parameter estimates (posterior medians and upper and lower .025 points):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>50%</th>
<th>(2.5%, 97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1 (intercept)</td>
<td>-1.096</td>
<td>($-4.198, 0.4305$)</td>
</tr>
<tr>
<td>β_2 (living area)</td>
<td>0.659</td>
<td>($-0.091, 2.254$)</td>
</tr>
<tr>
<td>β_3 (age)</td>
<td>0.009615</td>
<td>($-0.8653, 0.7235$)</td>
</tr>
<tr>
<td>ϕ</td>
<td>5.79</td>
<td>($1.236, 9.765$)</td>
</tr>
<tr>
<td>σ^2</td>
<td>1.38</td>
<td>($0.1821, 6.889$)</td>
</tr>
</tbody>
</table>

The covariate effects are generally uninteresting, though living area seems to have a marginally significant effect on price class.