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Problems involving estimation and inference under linear inequality constraints arise often

in statistical modelling. In this paper we propose an algorithm to solve the quadratic program-

ming problem of minimizing ψ(θ) = θ′Qθ−2c′θ for positive-definite Q, where θ is constrained

to be in a closed polyhedral convex cone C = {θ : Aθ ≥ d}, and the m × n matrix A is not

necessarily full row-rank. Examples of applications include inequality-constrained parametric

regression, and generalized shape-restricted regression using B-splines. Examples are given of

optimization problems with more general ψ that can be solved with iterative quadratic pro-

grams. The three-step algorithm is intuitive and easy to code, and facilitates inference methods

such as the B̄ test. The method also provides an algorithm for isotonic regression that is sub-

stantially faster than the classic pooled adjacent violators algorithm. Code is provided in the

R programming language.

Keywords: Constrained parameter estimation, shape-restricted regression, restricted least-

squares, inequality constraints, primal-dual methods, B̄ test.
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1 Motivation and Background

Let Q be a positive definite n × n matrix, let c be a vector in IRn, let A0 be an m × n

irreducible matrix, and let d be a vector in the column space of A. The term “irreducible”

means “non-redundant” and will be defined formally in section 2. The quadratic programming

problem

find θ̂ to minimize θ′Qθ − 2c′θ subject to A0θ ≥ d (1)

may be readily transformed into a “cone projection” problem by considering the Cholesky

decomposition U ′U = Q and finding θ0 such that A0θ0 = d. Then define φ = U(θ − θ0),

z = (U−1)′(c−Qθ0), and A = A0U
−1 to get

find φ̂ to minimize ‖ z − φ ‖2 subject to Aφ ≥ 0. (2)

The set

C = {φ ∈ IRn : Aφ ≥ 0} (3)

is easily seen to be a polyhedral convex cone in Rn, as each row of A defines a half-space,

and C is the intersection of these half-spaces. Because the convex objective function is to be

minimized over a convex set, a unique solution φ̂ exists.

An example of an application in statistics is the least-squares regression problem with linear

inequality constraints on the coefficients. Let X be an n × k fixed design matrix and β be a

k-dimensional parameter vector, and consider the model

y = Xβ + ε (4)

where E(ε) = 0 and cov(ε) = σ2I. Suppose it is reasonable to impose constraints on the

parameter vector in the form A0β ≥ d, where A0 is an m×k irreducible matrix. The problem

of minimizing ‖ y−Xβ ‖2 subject to the constraints is a quadratic programming problem with
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Q = X ′X, and c = X ′y. The constrained least-squares solution provides smaller squared error

loss compared with the unconstrained fit if the true function indeed satisfies the constraints,

with equality only if the two estimators coincide (a short proof is provided in section 4). Tests

of H0 : A0β = d versus Ha : A0β > d use the B̄ statistic (discussed in section 4), and have

higher power than the corresponding F -test with Ha : A0β 6= d.

Methods for minimizing ‖ y − Xβ ‖2 subject to various linear inequality and equality

constraints were proposed by Judge and Takayama (1966); they used a simplex algorithm

to obtain the optimal β. Liew (1976) considered constraints Aβ ≥ d, and used the Dantzig-

Cottle “principal pivoting” algorithm and provided an approximate variance-covariance matrix

for β̂. The χ̄2 statistic was defined for known model variance by Kudô (1963) for multi-variate

analogues of one-sided tests, in particular for order-restricted inference concerning the means

of several populations. The B̄ statistic is a straight-forward extension to the case of unknown

model variance. Gouriéroux, Holly, and Monfort (1982) investigated the properties of tests of

H0 : Aβ = c versus Ha : Aβ > c, defining a Kuhn-Tucker test and deriving the asymptotic

distribution when A is full row-rank. They give examples using one and two constraints.

Raubertas, Lee, and Nordheim (1986) further investigated tests of hypothesis defined by linear

inequality constraints. Wolak (1989) investigated properties of tests based on the χ̄2 statistic

for mixtures of linear inequality and equality constraints on the parameters. Hawkins (1994)

considered the problem of fitting monotonic polynomials to data using a primal-dual algorithm

to adjust the coefficients iteratively.

Tests involving ordering constraints for categorical data were considered by Robertson and

Wright (1981). Dardanoni and Forcina (1998) considered maximum likelihood estimation of

stochastically ordered distributions of discrete random variables. They formulate the problem

as an iteratively re-weighted cone projection, and recommend the algorithm of Dykstra (1983).

Bartolucci, Forcina, and Dardanoni (2001) estimate discrete bivariate distributions under pos-

itive quadrant dependence, also using an iteratively re-weighted cone projection scheme. The
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special case of stochastic ordering involving multivariate totally positive binary random vari-

ables was considered by Bartolucci and Forcina (2000). In this case there are more constraints

than dimensions, and the authors use iteratively re-weighted quadratic programs. Hall and

Præstgaard (2001) test for homogeneity in the mixed model under the constraint that a co-

variance matrix must be non-negative definite. Molenberghs and Verbeke (2007) also give a

number of examples of estimation and testing in constrained parameter spaces. A thorough

treatment of the theory and history of restricted parameter space estimation is in van Eeden

(2006), and chapter 21 of Gourieroux and Monfort (1995) provides an exposition of estimation

and testing under linear inequality constraints.

Another traditional use for constrained estimation and inference is for nonparametric re-

gression with shape restrictions. Suppose interest is in fitting a scatterplot generated from

yi = f(xi) + εi, i = 1, . . . , n, (5)

where a parametric form is unknown for f , but it may be assumed that f is non-decreasing.

Defining θi = f(xi), the problem is to find θ ∈ IRn to minimize ‖ y−θ ‖2 given Aθ ≥ 0, where

the non-zero elements of the (n−1)×n matrix A are Ai,i = −1 and Ai,i+1 = 1, i = 1, . . . , n−1.

This model was first considered by Brunk (1955) who proposed the pooled adjacent violators

algorithm (PAVA) to obtain the solution. The B̄ test for constant versus monotone regression

function is described in Silvapulle and Sen (2005), chapter 3. For estimation assuming f is

convex, the non-zero elements of the (n − 2) × n constraint matrix are Ai,i = ti+2 − ti+1,

Ai,i+1 = ti − ti+2, and Ai,i+2 = ti+1 − ti. Fraser and Massam (1990) proposed the mixed

primal-dual bases algorithm to solve the concave regression problem, and the B̄ test for linear

versus convex regression function was derived in Meyer (2003).

This paper introduces a simple, three-step algorithm for cone projection that is fast and

intuitive, and can be applied to any of the above quadratic programming situations. When

applied to monotone regression, it is considerably faster than PAVA. The code, shown in the
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R programming language in Appendix A, is only a couple dozen lines. The speed is important

for applications in iteratively re-weighted cone projection algorithms such as for generalized

regression, and in estimating the mixing distribution used for the B̄ test. The rest of the

paper is organized as follows. Some necessary theory about cones and projections onto cones

is outlined in the next section; the propositions can be skipped by readers interested only in the

performance and applications of the algorithm. The theory is used in the convergence results

(Appendix B) and in the outline of the B̄ test statistic (section 4); more details and proofs of

the propositions can be found in Silvapulle and Sen (2005), chapter 3, or Meyer (1999). The

proposed cone projection (“hinge”) algorithm is described in the section 3 and compared to

other algorithms. Examples of useful applications in statistics follow in section 4.

2 Properties of Convex Polyhedral Cones

The convex polyhedral cone (3) is considered for an m × n irreducible constraint matrix A,

where “irreducible,” means that no row of A is a positive linear combination of other rows,

and there is not a positive linear combination of rows of A that equals the zero vector. Note

that if A is full row-rank, then it is irreducible. If a row is a positive linear combination of

other rows, it can be removed without affecting the problem, and if the origin can be written

as a positive linear combination of rows, then there is an implicit equality constraint in the

matrix A, which can be dealt with separately. Silvapulle and Sen (2005) use the term “tight”

to describe this non-redundancy of A.

Let m1 be the dimension of the space spanned by the rows of A. If m1 is less than n,

then the cone contains a linear space V , of dimension n − m1; this is the null space of A.

Let Ω = C ∩ V ⊥; then Ω is a polyhedral convex cone that does not contain a linear space

of dimension one or greater, and sits in an m1-dimensional subspace of IRn. The “edges” or
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“generators” of Ω are vectors δ1, . . . , δm2 in Ω such that

Ω =

{
φ ∈ IRn : φ =

m2∑
i=1

bjδ
j , where bj ≥ 0, j = 1, . . . ,m2

}
,

and hence

C =

{
φ ∈ IRn : φ = v +

m2∑
i=1

bjδ
j , where bj ≥ 0, j = 1, . . . ,m2 and v ∈ V

}
. (6)

If m1 = m, then m2 = m and the edges of Ω are the columns of the matrix ∆ = A′(AA′)−1.

For the case of more constraints than dimensions (m > m1), the edges of the cone are obtained

as follows (see Meyer 1999 for proof). Define γ1, . . . ,γm to be the rows of A. Suppose

J ⊆ {1, . . . ,m} and let S = L({γj , j ∈ J}), where L denotes “the space spanned by.” If

dim(S) = m1 − 1, then S⊥ ∩ V ⊥ is a line through the origin containing the vectors δ and −δ,

say, where δ ⊥ γj for all j ∈ J . If 〈δ,γi〉 ≥ 0 for all i /∈ J , then δ is an edge of Ω. Conversely,

all edges are of this form. In the case of more constraints than dimensions, the number m2 of

edges may be considerably larger than m.

Because V is orthogonal to Ω, φ̂ is the sum of the projections of y onto V and Ω, so that

φ̂ can be written as v + ∆b, where v ∈ V , the columns of ∆ are δ1, . . . , δm, and b ≥ 0. Note

that this representation is not necessarily unique if there are more constraints than dimensions,

but φ̂ is unique. Necessary and sufficient conditions for φ̂ ∈ C to minimize ‖ y − φ ‖2 are

〈y − φ̂, φ̂〉 = 0 and 〈y − φ̂,φ〉 ≤ 0, for all φ ∈ C; because the δ vectors are generators of the

cone, these conditions may be written

〈y − φ̂, φ̂〉 = 0; 〈y − φ̂,v〉 ≤ 0 for all v ∈ V ; and 〈y − φ̂, δj〉 ≤ 0 for j = 1, . . . ,m2; (7)

Proposition 1 Let φ̂ be the unique minimizer of ‖ y−φ ‖2 over φ ∈ C, and write φ̂ = v+∆b

for b ≥ 0 and v ∈ V . Let J ⊆ {1, . . . ,m} index the non-zero elements of b; that is, j ∈ J if
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bj > 0. Then φ̂ is the projection of y onto the linear space spanned by δj, j ∈ J , and the basis

vectors for V .

Hence, the projection of a vector onto a polyhedral convex cone is the ordinary least-squares

projection onto the linear space spanned by a basis for V and a subset of cone edges indexed by

a subset J of {1, . . . ,m}. The projection lands on a face of the cone; the faces can be defined

as

FJ =

φ ∈ IRn : φ = v +
∑
j∈J

bjδj , bj > 0, v ∈ V

 .
Note that F∅ = V (where ∅ denotes the empty set), and the interior of the constraint cone is

the face where J = {1, . . . ,m}. Finally, we define sectors CJ , containing all y ∈ IRn such that

the projection of y onto C falls on FJ . The sectors are themselves polyhedral convex cones,

and if m = m1, the sectors partition IRn. Otherwise, for irreducible A, any sector overlap has

measure zero in IRn.

The set C∅ ∩ V ⊥ is also called the polar cone. The edges of the polar cone are simply the

rows of −A. The next proposition implies that the projection onto the constraint cone may

alternatively be found via projection onto the polar cone.

Proposition 2 Let ρ̂ be the projection of y onto the polar cone, and let φ̂ be the projection

of y onto the constraint cone. Then φ̂+ ρ̂ = y.

3 Algorithms for Cone Projection

An early algorithm for cone projection was proposed by Dykstra (1983). Using that C is the

intersection of half-spaces, it cyclically projects a residual vector onto the half-spaces, updating

the residual vector at each step. The interior point algorithm for minimizing a quadratic

function over a convex set is a gradient-based algorithm, first proposed by Karmarkar (1984)

for linear programming. From a feasible first guess, the algorithm moves along the gradient

towards the boundary of the set, stopping at a point still in the interior. The set is mapped onto
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itself to bring current solution closer to the middle. The algorithm iterates until a tolerance

is reached. For more details, see Fang and Puthenpura (1993), chapters 9 and 10. Fraser

and Massam (1989) developed the mixed primal-dual bases algorithm for cone projections and

applied it to concave nonparametric regression.

The interior point algorithm and the cyclical projections algorithm of Dykstra (1983) are

considered to convergence in “infinitely many” steps, because the true solution is approached

asymptotically and reached within a user-defined tolerance. In contrast, other algorithms that

exploit the edges of the cone are guaranteed to produce the solution in a finite number of

steps. These include the non-negative least squares (NNLS) algorithm of Lawson and Hanson

(1995), the mixed primal-dual bases (MPDB) algorithm of Fraser and Massam (1989), and the

“hinge” algorithm, proposed here.

The Hinge Algorithm

Proposition 1 tells us that the minimizer of (2) subject to Aφ ≥ 0 with irreducible m× n

A can be solved by finding J ⊆ {1, . . . ,m} where φ̂ lands on FJ , i.e., where y ∈ CJ . The hinge

algorithm arrives at the appropriate set J through a series of guesses Jk. At a typical iteration,

the current estimate φk is the least-squares regression of z on the space spanned by δj , for

j ∈ Jk. (The δj , j ∈ J , were originally called “hinges” since in the convex regression problem

for which the algorithm was initially devised, the points (tj , φj), j ∈ J , are the points at which

the line segments in the piecewise linear fit change slope, and the bends are allowed to go only

one way.) The initial guess J0 can be any subset of {1, . . . ,m} for which the corresponding

δj , j ∈ J , form a linearly independent set. The hinge algorithm can be summarized in three

steps. At the kth iteration,

1. Project z onto the linear space spanned by {δj , j ∈ Jk}, to get φk =
∑
j∈Jk

b
(k)
j δj .

2. Check to see if φk satisfies the constraints, i.e. if all b(k)j are non-negative:

• If yes, go to step 3.
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• If no, choose j for which b
(k)
j is smallest, and remove it from the set; go to step 1.

3. Compute 〈y − φk, δj〉 for each j /∈ Jk. If these are all nonpositive, then stop. If not,

choose j for which this inner product is largest, add it to the set, and go to step 1.

Intuitively, at each stage, the new edge is added where it is “most needed,” and other edges

are removed if the new fit does not satisfy the constraints. Although the δj , j = 1 . . . ,m2 might

not form a linearly independent set, at each step the δj , j ∈ Jk are linearly independent. For,

suppose that at step 2, we have that Jk defines a linearly independent set of δj vectors. For

all vectors δj such that the indices Jk ∪ {j} do not define a linearly independent set, we have

〈y − φk, δj〉 = 0, so these j are not added. Note that by Proposition 3, we can alternatively

project onto the polar cone using the rows of −A as the edges in the algorithm. This is useful

for problems with more constraints than dimensions, as the number of constraint cone edges

can be large, and finding them may be computationally intensive.

Since the stopping criteria are defined by (7), it is clear that if the algorithm ends, it gives

the correct solution. The only thing that requires proof is that the algorithm does end, that

is, it does not produce the same set of edges twice, which would result in an infinite loop. The

proofs are deferred to the appendix.

The Nonnegative Least Squares Algorithm

The problem is stated in Lawson and Hanson (1995), chapter 23, as minimizing ‖ y−∆b ‖2

subject to b ≥ 0. The 12-step algorithm consists of two loops, one to add constraints and one

to remove constraints from the active set. The authors argue that each loop must terminate

in a finite number of steps, and hence the algorithm converges, but they do not show that the

algorithm does not go back and forth between loops indefinitely.

The Mixed Primal-Dual Bases Algorithm

The mixed primal-dual bases (MPDB) algorithm of Fraser and Massam arrives at J in
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an intuitive way. The algorithm starts by choosing a vector z0 in a sector indexed by J0,

and moves toward the data vector z along the line connecting z0 and z. Each time a sector

boundary is crossed, the set Jk indexing the new sector is updated, until the sector containing

z is reached. Because there are only a finite number of sectors, the algorithm is guaranteed to

converge. The MPDB algorithm was extended to the case of more constraints than dimensions

in Meyer (1999).

Comparison of Algorithms

The NNLS, MPDB, and hinge algorithms discover the set J indexing the sector containing

y. Each step involves an ordinary least-squares projection, so the fastest algorithm has fewest

sets Jk in the chain. Once the NNLS problem is converted into a cone projection, this and the

hinge algorithms require approximately the same computing time to converge if the starting J0

is the null set, and in fact will build the set J in the identical sequence if the edge vectors are

scaled to have unit lengths. Both tend to be faster than the MPDB, in our simulations using

convex regression. The data were generated as yi = f(ti) + σεi, for equally spaced t, where

εi are iid standard normal, for two choices each of sample size, error variance, and underlying

regression function. For each combination, 1000 data sets were generated, and the algorithms

performed on an Apple laptop, with a 2.4 GHz Intel processor. The number of iterations

required for each algorithm depends on the size of the dataset and the size of the error. Large

n and small errors both result in more edges in the solution, and generally, the difference in

iterations required to reach the solution is more dramatic in these cases. Table 1 compares

the total user time required for the hinge algorithm with that for the mixed primal-dual bases

algorithm.

The hinge algorithm is more intuitive than the NNLS, and the R code listed in Appendix A

is quite short. The option of starting with an arbitrary J is appealing for many applications in

constrained smoothing. For applications such as standard monotone or convex regression where

the final J is expected to be relatively small compared to m, the empty set is recommended for
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f(t) = et, σ = 0.2 f(t) = et, σ = 0.05
n hinge MPDB hinge MPDB
50 2.82 4.98 4.65 9.15
100 4.60 8.65 7.82 15.21

f(t) = (t− 1
2)2, σ = 0.1 f(t) = (t− 1

2)2, σ = 0.05
n hinge MPDB hinge MPDB
50 3.87 7.41 6.21 13.31
100 5.05 9.77 8.03 15.20

Table 1: User time on MacBook Pro required by the two algorithms for convex regression using
1000 simulated data sets per combination of regression function and model variance.

J0. If the set J is expected to be relatively large, such as for regression splines or constrained

parametric function estimation, we can start with J = {1, . . . ,m}. For applications with

iteratively re-weighted cone projections, the speed is considerably improved if the starting J

was the final J for the last set of weights.

4 Applications in Statistics

Constrained Least-squares Regression

Consider the model (4) where it is known that Aβ ≥ 0 for irreducible A. Let β̂ be the con-

strained least-squares estimator for β, and let β̃ be the unconstrained estimator (X ′X)−1X ′y.

The Kuhn-Tuker conditions for the cone projection lead to (y − Xβ̂)′Xβ̂ = 0 and (y −

Xβ̂)′Xβ ≤ 0 for all β such that Aβ ≥ 0. Now

‖Xβ̃ −Xβ ‖2=‖Xβ̃ −Xβ̂ ‖2 + ‖Xβ̂ −Xβ ‖2 +2(Xβ̃ −Xβ̂)′(Xβ̂ −Xβ).

The last term is

(Xβ̃ −Xβ̂)′(Xβ̂ −Xβ) = (y −Xβ̂)′(Xβ̂ −Xβ)− (y −Xβ̃)′(Xβ̂ −Xβ),
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where the second term on the right is zero by principles of ordinary least-squares regression,

and the first is positive by (7). Hence, if the true β satisfies the constraints, the constrained

estimate of E(y) is closer to the truth than the unconstrained estimate, with equality only if

the two estimates coincide.

A well-known example is the simple linear regression model yi = β0 + β1xi + εi, where the

slope β1 must be non-negative. The constrained least-squares estimate is easy to obtain: it

is the ordinary least-squares estimate unless that does not provide a positive slope, in which

case β̂1 = 0 and β̂0 = ȳ. Now suppose the researcher wishes to allow some curvature in the

regression function, so that the quadratic model yi = β0 + β1xi + β2x
2
i + εi is considered,

retaining the assumption that the expected value of y is non-decreasing in x. The constraint is

β1 + 2β2x ≥ 0 over the range of the data, so that if x ∈ [0, 1], these can be written as Aβ ≥ 0

with

A =

 0 1 0

0 1 2

 ,
and β̂ is obtained using the hinge algorithm. To illustrate, the scatterplot of n = 50 points

shown in Figure 1 was generated using equally spaced xi, the regression function f(xi) =

1− (1−xi)2, and independent standard normal errors. Least-squares quadratic fits are shown,

where the dashed curve represents the unconstrained fit and the solid curve is constrained to

be monotone. The dotted curve is the true regression function.

Another important example is the “warped plane” model yi = β0+β1x1i+β2x2i+β3x1ix2i+

εi, where E(y) is constrained to be increasing in both variables. The constraints are β1+β3x2i ≥

0, for all x2i and β2 +β3x1i ≥ 0, for all x1i. If both predictors are confined to the unit interval,

this provides four constraints on three parameters. Constrained and unconstrained fits are

shown in Figure 2 for data simulated from the surface f(x1, x2) = x1x2, unit error variance,

and n = 100, with the predictor values forming a grid in the unit intervals.

Hypothesis testing
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Figure 1: Quadratic fits to a scatterplot simulated using f(x) = 1 − (1 − x)2 (shown as the
dotted curve) and n = 50 observations. The dashed curve is the unconstrained fit, and the
solid is constrained to be non-decreasing.
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Figure 2: (a) Warped-plane fit to data set yi = x1x2 + εi, where the expected value of y is
constrained to be increasing in both predictors. (b) Unconstrained fit.
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The B̄ test is outlined for the transformed model z = φ + σε, where ε is multivariate

standard normal, and it is known that Aφ ≥ 0. The test of H0 : Aφ = 0 versus H1 : Aφ > 0

uses the test statistic B̄ = (SSE0−SSEa)/SSE0, where SSE0 is the sum of squared residuals

under H0 and SSEa is that under Ha. Define pd to be the probability under the null hypothesis

that z falls in a sector whose face has dimension d; then

P (B̄ ≤ a) =
m1∑
d=0

P

[
Be

(
d

2
,
n− d− r

2

)
≤ a

]
pd,

where r is the dimension of the null space of A, and Be(α, β) is a beta random variable with

degeneracies Be(0, β) = 0, and Be(α, 1) = 1. See Silvapulle and Sen (2005), chapter 3 for more

details. The quantities pd may be found to arbitrary precision through simulations, which may

be performed quickly using the hinge algorithm. Tests H0 : A0θ = d versus Ha : A0θ > d for a

more general quadratic programming problems (1) may be performed through transformation

to cone projection.

If the constraints are valid, the test has better power when the constraints are used. For

the case of simple linear regression with the slope constrained to be positive, the test of

H0 : β1 = 0 versus Ha : β1 > 0 is simply a one-sided t-test. For the fits in Figure 1, the F -test

for H0 : Aβ = 0 (i.e., constant function) vs Ha : Aβ 6= 0 provides p = .097, so that we would

conclude at α = .05 that there is no evidence of a relationship between the response and the

predictor. The B̄ test for the constrained fit gives p = .037. If the researcher may also assume

that the relationship is concave, the constraint β2 < 0 is added, and the associated B̄ test with

the more stringent assumptions provides p = .031 (the fit is the same as the monotone fit, as

this happens to be concave). Table 2 shows that the constrained test gives substantially higher

power for this example, compared to the ordinary F test of constant versus quadratic.

For the “warped plane” example of Figure 2, the the B̄ test for constant versus doubly-

monotone warped plane provides a p-value of .031, which the F -test with unconstrained warped

plane alternative provides a p-value of .047. Power simulations are summarized in Table 3, for
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α = 0.01 α = 0.05
n f(x) σ B̄ test F -test B̄ test F -test
50 1− (x− 1)2 1 .368 .196 .647 .417
50 1− (x− 1)2 2 .091 .040 .264 .133
50 1− (x− 1)2 4 .034 .016 .125 .069
100 1− (x− 1)2 1 .712 .511 .897 .745
100 1− (x− 1)2 2 .190 .090 .426 .239
100 1− (x− 1)2 4 .054 .024 .179 .092

Table 2: Power comparisons for the B̄ test and the F -test with H0 : f ≡ c, each for 10,000
simulated data sets. The alternative for the B̄ test is that f is an increasing and concave
quadratic function; for the F test the alternative is unconstrained quadratic.

two underlying regression functions, two sample sizes, and three choices of model variance.

Monotone Regression

There is an elegant closed-form solution for the monotone regression problem provided by

Brunk (1955):

θ̂i = min
v≥i

max
u≤i

1
v − u+ 1

v∑
j=u

yj .

PAVA is a well-known method for finding this solution; see Silvapulle and Sen (2005), p 47 for

details. The monotone regression problem is an interesting application of the hinge algorithm

because during its implementation, no hinge indices are removed from the sets Jk at any iter-

ation. Therefore, the number of iterations is the number of jumps in the monotone regression

estimator, and hence the necessary CPU time to compute the estimator is much smaller than

for PAVA.

The δ-vectors can be written as: δji = j−n, for i = 1, . . . , j, and δji = j, for i = j+1, . . . , n,

for j = 1, . . . ,m, and V is spanned by the one-vector. Suppose at some iteration we have

Jk = {j1, . . . , jp}, where the elements of Jk are ordered so that j1 < · · · < jp. Then it is easily
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α = 0.01 α = 0.05
n µ σ B̄ test F -test B̄ test F -test

100 x1x2 1.0 .400 .271 .661 .512
100 x1x2 2.0 .083 .044 .237 .147
100 x1x2 4.0 .029 .018 .116 .072
100 (x1 + x2)/2 1.0 .355 .208 .625 .429
100 (x1 + x2)/2 2.0 .080 .034 .232 .125
100 (x1 + x2)/2 4.0 .030 .016 .117 .068
400 x1x2 1.0 .970 .935 .995 .983
400 x1x2 2.0 .363 .252 .619 .466
400 x1x2 4.0 .077 .042 .228 .139
400 (x1 + x2)/2 1.0 .948 .877 .989 .962
400 (x1 + x2)/2 2.0 .329 .193 .597 .403
400 (x1 + x2)/2 4.0 .079 .039 .226 .121

Table 3: Power comparisons for the B̄ test and the F -test, each for 10,000 simulated data sets.

seen that for 1 ≤ l ≤ p,

ȳ + bj1 + · · ·+ bjl =
1

jl+1 − jk

jl+1−1∑
i=jl

yi.

It can be shown that the first hinge index, say l, is chosen so that for any j1 < l and j2 > l,

1
l − j1

l−1∑
i=j1

yi ≤
1

j2 − l

j2−1∑
i=l

yi.

This means that the coefficient on δl remains positive after any subsequent additions of

edges, and a similar argument can be applied to coefficients of those edges, so that all coeffi-

cients remain positive throughout the implementation of the algorithm, and their indices are

never removed from the sets Jk. From any J , the projection of y onto the face FJ is easily

found by averaging the y-values between the j ∈ J .

Shape-Restricted Regression Splines

The monotone regression estimator is a step function, and the convex regression estimator
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is piecewise linear; neither is satisfactory if f known to be smooth. A method for smoothed

monotone regression using I-splines was given by Ramsay (1988) using regression splines, and

Meyer (2008) extended the method to convex restrictions using C-splines. An alternative

method for either is outlined here using the more familiar B-splines (see DeBoor 2001 for

details). Given a set of k distinct knots over the range of the x values, a set of m piece-

wise degree-p spline basis functions are be defined, that span the space of such piece-wise

polynomials. The spline basis vectors contain the values of these functions at the observed xi;

let the columns of the matrix X contain the basis vectors. The unconstrained fit is obtained

by minimizing ‖ y −Xβ ‖2 over β ∈ IRm.

A quadratic (p = 2) spline function is increasing if and only if it is increasing at the knots;

hence if Aij is the slope of the jth spline basis function at the ith knot, the monotone spline

estimator minimizes the sum of squared residuals subject to Aβ ≥ 0. Similarly, a cubic

spline function is convex if and only if it is convex at the knots, and the cubic B-spline basis

functions may be used with Aij equal to the second derivative of the jth spline basis function

at the ith knot. Examples of constrained fits to a scatterplot are shown in Figure 3. In plot

(a), the unsmoothed monotone regression is shown as the piecewise constant function, and

the monotone quadratic spline with four interior knots is shown as the dot-dash curve. In

plot (b), the unsmoothed convex regression function is shown as the solid piecewise linear

function, and the convex cubic regression spline is the dot-dash curve. The tests for constant

versus increasing and linear versus convex regression function with smoothed alternatives use

the B̄ test statistic; for simulations comparing the test to an F -test, see Meyer (2008). For

either monotone or convex constraints, we can demonstrate that when the constraints hold,

the constrained version of the estimator provides smaller squared error loss, by an argument

similar to that for the parametric case.

Weighted and Iteratively Re-weighted Least Squares

Estimation and testing for the regression models (4) or (5) with constraints may be accom-
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Figure 3: (a) Unsmoothed least-squares monotone fits a data set (step function) and quadratic
monotone regression spline fit (dot-dash curve). (b) Least-squares convex fit (solid) and cubic
convex spline (dot-dash). Both spline fits use three interior knots.

plished when the errors have an arbitrary positive definite covariance matrix, through weighted

regression. Specifically, for y = θ+σε with Aθ ≥ 0, suppose cov(ε) = Σ. The model equation

is multiplied through by L−1, where LL′ = Σ, to get z = φ+σξ where z = L−1y, φ = L−1θ,

and cov(ξ) is the identity matrix. The new constraint matrix is AL. The projection and

inference about the regression function are accomplished using the transformed model.

More general constrained maximum-likelihood estimation problems may be solved through

iteratively re-weighted cone projections. For example, we consider a generalized regression

model, where the response is a vector y of independent observations from a distribution written

in the form of an exponential family:

f(yi) = exp{[yiθi − b(θi)]/τ2 − c(yi, τ)},

where the specifications of b and c determine the sub-family of models. Common examples are

b(θ) = log(1+eθ) for the Bernoulli and b(θ) = exp(θ) for the Poisson model. The log-likelihood

function

`(θ, τ) =
n∑
i=1

[
yiθi − b(θi)

τ2

]
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is to be maximized over appropriate constraints on θ.

The vector µ = E(y), can be seen to be µi = b′(θi), and the variance of yi is b′′(θi)τ .

The mean vector is related to the predictor variables through a link function g(µi) = ηi. If

η = Xβ, constraints of the form Aβ ≥ d may be considered. Further, if the link function is

one-to-one, then monotonicity constraints imposed on the η values also constrains the mean

function to be monotone. Constrained regression splines may be used to model η, under

assumptions of monotonicity and smoothness. In any of these applications, the log-likelihood

function is maximized over η ∈ C where C is of the form (6). The algorithm involves iteratively

re-weighted cone projections, and follows the same ideas for the generalized linear model as

found in McCullagh & Nelder (1989). Starting with η0 ∈ C, the estimate ηk+1 is obtained

from ηk by constructing z

zi = ηki + (yi − µki )
(
dη

dµ

)
ki

,

where µki = g−1(ηki ) and the derivative of the link function is evaluated at µki . The weighted

projection of z onto C is obtained with weight vector w, where 1/wki = (dη/dµ)2kVk, and Vk is

the variance function evaluated at µki . ( The variance function may be written in terms of the

mean as V (µi). ) This scheme can be shown to converge to the value of η that maximizes `

over η ∈ C.

To illustrate, we use a data set given in Ruppert, Wand, and Carroll (2003), concerning

incidence of bronchopulmonary dysplasia in n = 223 low birth weight infants. Suppose experts

believe that the probability of the condition is a smooth, decreasing function of birth weight.

The data are shown in Figure 4 as tick marks at one for infants the condition and at zero

otherwise. The ordinary logistic regression is shown as the dashed curve, but perhaps there is

no reason to believe that the assumption of linear log-odds holds. The unconstrained spline

estimator with five equally spaced knots is shown as the dotted curve; this is unsatisfactory

because it violates the assumption of decreasing probability. The constrained spline estimator

using the same knots is shown as the solid curve; this shows a steeper descent than the fit

19



|

|

|

| ||

|

|

||

| |

||

||

|| ||

| | | ||

|

| || |

|

||

||||

| ||

| | |

|

||||

|

||

| ||

|

|

||||

|| |

||

| ||| || || || ||| |

||

|| ||

||

| ||| || ||

|

| |

||

| |

|

|

||||

| |

| |

|

|

|

|

|||

| |

|| |

||

| || |

|

|

||| ||

|| || |

|

| |

|

||| | ||

|

|| || ||

| |

|

||

|

|

| || || | ||

||

|

|

|

|

| | | || ||| | | | |

|

| ||| ||| | || | |

|

|| || |

|

|

|

| |||

|

|| | |
400 600 800 1000 1200 1400 1600

0.0
0.2

0.4
0.6

0.8
1.0

Birthweight (grams)

Br
on

ch
op

ulm
on

ary
 dy

sp
las

ia

Figure 4: The estimated probability of bronchopulmonary dysplasia in low birth weight infants,
as a function of birthweight. The dashed curve is the ordinary logistic regression, the dotted
curve is the unconstrained regression spline estimate, and the solid curve is the monotone
decreasing regression spline estimate.

assuming linear log odds, and a leveling off above zero. If the only valid assumptions are

that the probability of the condition is a smooth, decreasing function of birthweight, the more

flexible nonparametric fit may be preferred.

Discussion

Constrained estimation is useful for both parametric and non-parametric function estima-

tion. When constraints are valid, their use reduces squared error loss of the estimates and

increases power of the tests for significance of the predictor. The hinge algorithm is intuitively

simple and quite fast. It provides a new, faster method for monotone regression. The code

provided in Appendix A is short and uses only basic matrix operations. More specific code for

the other applications listed in this paper, including the for the general quadratic programming

problem, constrained parametric regression, constrained spline regression, the B̄ test in para-

metric and non-parametric applications, and the generalized regression models, can be found

on http://www.stat.colostate.edu/∼meyer/code.htm.
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A Code

The hinge algorithm to solve the generic cone projection problem of minimizing ‖ y − θ ‖2

subject to Aθ ≥ 0 is provided here in R code, where amat is the irreducible constraint matrix

A. Specifically, y is projected onto the polar cone to get ρ̂, and Proposition 2 is used to get θ̂.

quadprog=function(y,amat){
n=length(y);m=length(amat)/n
sm=1e-8;h=1:m<0;obs=1:m;check=0
delta=-amat;b2=delta%*%y
if(max(b2)>sm){

i=min(obs[b2==max(b2)])
h[i]=TRUE

}else{check=1;theta=1:n*0}
while(check==0){

xmat=matrix(delta[h,],ncol=n)
a=solve(xmat%*%t(xmat))%*%xmat%*%y
if(min(a)<(-sm)){

avec=1:m*0;avec[h]=a
i=min(obs[avec==min(avec)])
h[i]=FALSE;check=0

}else{
check=1
theta=t(xmat)%*%a
b2=delta%*%(y-theta)
if(max(b2)>sm){

i=min(obs[b2==max(b2)])
h[i]=TRUE;check=0}}

}
return(y-theta)}
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B Proofs

It is clear that if the hinge algorithm ends, it gives the correct solution. The algorithm ends
because it does not choose the same set of hinges twice. The sum of squared errors (SSE)
‖ y − θ̂ ‖2 decreases for subsequent iterations with the same number of hinges, so that the
algorithm cannot produce an infinite loop. First we show that the simplest type of loop does
not occur.

Proposition 3 The algorithm does not remove the hinge that it just added.

Proof: Suppose at the start of Step 2 in some iteration of the algorithm, the set of hinges is
Jk, and at the end it is Jk+1 = Jk ∪ {l}, so that δl is the most recently added hinge. The
coefficient of δl produced in Step 3 is

bl =
〈y, δ̃l〉
‖ δ̃l ‖2

,

where δ̃
l

is the residual from the regression of δl on the other regressors {δj , j ∈ Jk}. The
numerator of the right hand side is equivalent to 〈y − θ̂k, δl〉, because of orthogonality:

〈y, δ̃l〉 = 〈y − θ̂k, δ̃l〉 = 〈y − θ̂k, δl〉 > 0.

The first equality is because θ̂
k ⊥ δ̃l and the second because δl − δ̃l ⊥ y − θ̂. ♦

The idea for proving that the algorithm stops is to show that the sum of squares errors at
a given iteration with nh hinges is less than that of the last iteration with nh hinges. Suppose
that at the beginning of Step 2 for some iteration of the algorithm we have the solution:

θ̂
B

=
∑
j∈JB

bBj δ
j

and that this solution satisfies the constraints. Suppose that it is not optimal and the algorithm
adds the vector δl to the set of regressors. The least-squares fit produced by Step 3 is:

θ̂
M

=
∑
j∈JB

bMj δ
j + bMl δ

l.

Further suppose that this θ̂
M

does not satisfy the constraints, so that bMi , say, is negative.
The algorithm will then remove δi from the set of regressors in Step 4 and go to Step 3 to refit
the data. The next proposition shows that the new solution

θ̂
N

=
∑
j∈JN

bNj δ
j ,
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where JN = JB ∪ {l} − {i}, has SSE(θ̂
N

) < SSE(θ̂
B

).

Proposition 4 If the algorithm replaces a hinge, then the SSE after is less than the SSE
before.

Proof: Let
δ̃
l

= δl −
∑
j∈JB

αljδ
j

where the second term is the projection of δl onto the space spanned by {δj , j ∈ JB}. Then
δ̃
l ⊥ θ̂B so we can write

θ̂
M

= θ̂
B

+ bMl δ̃
l

=
∑
j∈JB

(bBj − αljbMl )δj + bMl δ
l.

We know that bBi > 0 since θ̂
B

satisfies the constraints, and bMl > 0, by Proposition 3.
Further,

bMi = bBi − αlibMl < 0,

so that αli > 0. Let
θ(x) =

∑
j∈JB

(bBj − αljx)δj + xδl.

Note that θ(0) = θ̂
B

and θ(bMl ) = θ̂
M

. When x = bBi /α
l
i, the coefficient of δi in θ(x)

disappears. Further, 0 < bBi /α
l
i < bMl , since bBi − αli0 > 0 and bBi − αlibMl < 0. Since bMl

minimizes ‖ y − θ(x) ‖2, we have

‖ y − θ(0) ‖2 > ‖ y − θ
(
bBi
αli

)
‖2 > ‖ y − θ(bMl ) ‖2 .

Further,

‖ y − θ̂N ‖2< ‖ y − θ
(
bBi
αli

)
‖2

since θ̂
N

is the least-squares fit with the same regressors. So finally,

‖ y − θ̂N ‖2< ‖ y − θ̂B ‖2 .
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