
THESIS 

 

 

ANALYSIS AND MODELING OF ACID NEUTRALIZING CAPACITY 

IN THE MID-ATLANTIC HIGHLANDS AREA 

 

 

 

Submitted by 

Brett R. Kellum 

Department of Statistics 

 

 

 

 

In partial fulfillment of the requirements 

for the degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Spring 2003 

COLORADO STATE UNIVERSITY 



ABSTRACT 

Acid Neutralizing Capacity (ANC) is a measure of a solution’s ability to buffer 

itself against acidification and is used to monitor the effect of acid rain on watersheds. 

From 1993 to 1996, the U.S. Environmental Protection Agency collected ANC values 

and other data for 579 stream sites in the Mid-Atlantic Highlands Area of the Eastern 

United States. Combining these data with information from Geographic Information 

Systems (GIS) and Thematic Mapper satellite imagery, a model for predicting ANC 

using remotely sensed predictors was developed. The goal was to be able to predict ANC 

at unobserved stream locations. Several issues and concerns regarding the available data 

were examined, along with exploratory data analyses to investigate the relationships 

between ANC and the possible predictors. Several types of models were considered; in 

particular, a multiple regression model was selected. Our analyses determined the 

presence of anisotropic correlation between the residuals from the multiple regression 

analysis. The effects of changing direction and span of correlation in the autocorrelation 

function were investigated and a final variogram model for explaining the observed 

spatial correlation was selected.  

In conclusion, nine remotely sensed predictors (elevation, felsic and carbonate 

bedrock, and percent pasture, percent quarry, percent probable row crops, percent woody 

wetlands, percent emergent wetlands, and percent high density urban area in the 

watershed above a site) were determined to be useful predictors of ANC in the MAHA 

and an exponential autocorrelation function was selected with a correlation range of 

approximately 100 miles, sill and nugget variance of 0.21 and 0.104, respectively, and 

direction of maximal correlation at 45° with a span of 35°. Here distance is measured in 

terms of the Euclidean distance between sites. In addition to the results of our analyses, 

several areas of possible future work will be presented. 
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I. Introduction 

As the population of the United States and the reach of civilization continue to 

expand, more and more of the environment is being impacted by man. As this impact 

increases, mankind’s responsibility to maintain a healthy environment increases as well. 

In 1990, Congress passed the Clean Air Act Amendments, toughening the environmental 

standards set forth by the Clean Air Act of 1970 and amended in 1977. These 

amendments mandated the monitoring of several environmental indicators, including the 

acidification of lakes and streams. The acidification of lakes and streams has a 

significantly harmful effect on the surrounding ecosystems (Stoddard, et al., 2003). The 

monitoring of water acidification can be done by analyzing acid neutralizing capacity 

(ANC) of bodies of water, for acid neutralizing capacity measures the ability of a solution 

to buffer itself against acidification (Stoddard, et al.,  2003).  

In order to monitor and explain the impact of mankind on lakes and streams, 

watersheds must be monitored. It is always best to have precise or exact information for 

all stream sites of interest, but acquiring precise information is not always practical or 

economical. It is not always physically possible to visit a given site in order to ascertain 

that exact information. Nor is it fiscally possible to frequently visit every site. Therefore, 

establishing a method to accurately predict the characteristics of a given stream site from 

a great distance would be very beneficial. Is it possible to predict the characteristics of a 

given stream site based solely upon remotely sensed predictors, i.e. influential site 

characteristics that can be gathered without actually visiting the stream site itself? This is 

the central motivating question of the research presented here. 
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This paper will present the data used and the problems encountered when 

gathering and combining data from different sources. A model for predicting acid 

neutralizing capacity using a set of remotely sensed predictors for the Mid-Atlantic 

Highlands (MAHA) region of the U.S. will be presented, followed by a discussion of 

several possible areas of future work to consider. 

In Section II, we will examine the availability and distribution of data in the 

MAHA region. The data were combined from several different sources, which created 

several problems that needed to be addressed. The available data and procedure used for 

creating the final data set will be discussed. 

Section III will cover the initial analysis of this final data set, exploring the 

characteristics of acid neutralizing capacity and several predictor variables. Initial 

relationships between ANC and the predictors will be pursued, as well as the inter-

relationships between the predictor variables themselves. 

Section IV will examine some preliminary modeling of ANC using linear 

regression methods. We will describe our methods of model selection, look at the issue of 

multicollinearity in the predictors, and discuss some initial results from the linear 

regression modeling. 

In Section V, we will describe the need to include spatial considerations in any 

modeling of ANC in this region. We will discuss what we mean by isotropic and 

anisotropic spatial correlation and create a model for predicting ANC using these spatial 

considerations. 

Finally, Section VI will examine several of the possible areas for further research 

and questions that arose over the course of this study that require further examination. 



II. ANC in the Mid-Atlantic Highlands Area 

A. Overview 

In order to create a model for predicting acid neutralizing capacity using remotely 

sensed predictors, data were used from the Environmental Protection Agency’s 

Environmental Monitoring and Assessment Program (EMAP) study of the Mid-Atlantic 

Highlands region. EMAP is a “research program to develop the tools necessary to 

monitor and assess the status and trends of national ecological resources” (Environmental 

Monitoring and Assessment Home Page, 2002). The data were collected by teams of 

researchers at probability selected stream sites in the Mid-Atlantic Highlands Area 

(MAHA) of the eastern United States. This region consists of most of the states of 

Pennsylvania, Virginia, and West Virginia. Parts of Delaware, Maryland, and New York 

were also included in the study area (Figure1). 

Within this region, teams collected data from various stream sites over the course 

of a four-year period from 1993 through 1996. The time of year in which the samples 

were collected was restricted to the months of May through July, which are typically 

“low flow” months for this region, to minimize the seasonal variability in stream 

characteristics (Jones, Riitters, et.al, 1997).  

 The data collected by EMAP in the MAHA region resulted in a very large amount 

of information on hundreds of different variables, including landscape characteristics at 

and surrounding each site, counts and characteristics of biologic life at the site, and the 

chemistry composition of the stream water. Our focus was on one of the water chemistry 

measurements, ANC. In addition to the data from EMAP, data were gathered from a 

distance via satellite imagery or Geographic Information Systems (GIS) modeling. 
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Figure 1: MAHA Region of the United States-
EMAP Sampled Sites

 

The goal of this study was to create a model for predicting ANC using 

explanatory variables that could be acquired from a distance. Further, it was intended that 

the method used in creating this model could be reproduced and updated when more 

information became available, for one concern we encountered was the lack of complete 

information at many of the sampled sites. This lack of information limited the scope and 

accuracy of the final model. Therefore, the methods and procedures used in this study 

were performed in such a way that as more data is gathered, the study within this region 

could be reproduced with this new information. 

 

B. Acid Neutralizing Capacity 

Acid neutralizing capacity was evaluated at 579 unique sites (Figure 1). Some 

sites were visited twice in the same year, once every year, once every other year, or just 

one time total during this four-year period. The number of repeated visits depended on  
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Figure 2:Histogram of Acid Neutralizing Capacity
From Full MAHA Data

 

the role of the site in the EMAP monitoring design. ANC ranged from –2195 to + 5620 

µeq/L. Figure 2 indicates that the distribution of acid neutralizing capacity was highly 

skewed to the right.  A majority of ANC values lie between 0 and 1000, with only 2 or 3 

extremely large, negative ANC values observed. Further, many positive values of ANC 

lie between 1000 and 6000. Although negative values of ANC were unusual, such values 

are legitimate because they indicate samples that were acidic when they were collected. 

Some studies have limited their research to streams and/or lakes with ANC values 

between 0 and 200 (Brewer, Sullivan, Cosby, and Munson, 2002), for these bodies of 

water are typically considered sensitive to acid deposition. While there are many sites 

where ANC does fall into that range, approximately 61% sites had values of ANC greater 

than 200. 
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Table 1: Sites and ANC values of five identified outliers 

Site ID PA839 WV797 WVT02 PA029 WV529 

ANC -2120 -1460 -803 -436 -326 

 

By limiting the scope of the research to only those sites that would be considered 

sensitive to acid deposition, the analysis would fail to take into account what may 

contribute to such large values of ANC. Therefore, it was deemed worthwhile to pursue a 

model to predict ANC over the whole range of values, and not limit the scope of the 

model to a certain range of ANC. 

It was shown that the distribution of ANC was highly skewed to the right (Figure 

2). Even though there were many extreme positive values of ANC in the data, few sites 

had extreme negative values of ANC. Five sites in particular were identified as 

unexplained outliers, and eliminated from further analysis, for the final model described 

below could not accurately predict ANC for these sites. The identified sites and levels of 

ANC are shown in Table 1.  

 
 
C. Landscape and Watershed Characteristics 

The driving motivation for this study was to create a model to predict acid 

neutralizing capacity using only remotely sensed model predictors. The first identified 

remotely sensed predictors consisted of 15 separate classifications of landscape 

characteristics as identified by Thematic Mapper (TM) satellite imagery. These variables 

are considered watershed scale variables. This means that using the TM satellite image, 

the watershed above a certain stream point is broken down into 30-meter resolution  
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Table 2: Thematic Mapper landscape classifications 

 

Barren Areas Developed Areas Cultivated Areas Vegetated Areas Water Areas 

Beach Urban (Low 
Intensity) Pasture Deciduous Forest Water 

Mines Urban (High 
Intensity) 

Probable Row 
Crops Evergreen Forest  

Quarry  Row Crops Mixed Forest  
Transitional   Emergent Wetlands  

   Woody Wetlands  

pixels, with each pixel then classified into one of 15 different landscape classifications 

(Table 1). (For further information on how each class was defined, please see Appendix 

A). For example, a quarry value of 5% at a sampled site means that 5% of the pixels 

above that given site were classified as belonging to a quarry. Further, if, at a given site, 

deciduous forest has a value of 65, this indicates that 65% of the pixels (i.e. 65% of the 

watershed) above that given site is classified as deciduous forest. 

Thematic Mapper satellite imagery information was available for 515 individual 

sites in five states. At the time of this analysis, Thematic Mapper imagery data were not 

available for sites in New York. For the 515 sites where TM data were available, data 

were reported in one or both of two different forms: 

• The number of pixels per watershed, separated by landscape classification  

• The percentage of each watershed classified as one of the 15 specific 

landscape types.   

All of the sites did have the percentage allocation, but not all of them gave the pixel 

information. Therefore, it appeared that using the percentages per watershed would be 

most useful due to the greater amount of information available. Two classes, barren 

beach areas and barren mine areas, were eliminated from the analysis. Only five sites 
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possessed mine drainage in the watershed above the site, one of which had already been 

eliminated from the analysis (Site ID #PA029). Also, barren beach areas was not 

included in the analysis because none of the sampled sites had any beach area located in 

the watershed above the site. 

 Bedrock geology is another factor that is related to acid neutralizing capacity. The 

importance of bedrock geology in predicting acid neutralizing capacity was shown by 

Sullivan, et al. (2002).  In analyzing ANC, Sullivan, et al. (2002) demonstrated that 

bedrock geology was the most significant indicator of acid neutralizing capacity in the 

Southern Appalachian Mountain Region of the United States. Virginia and West Virginia 

were included in this analysis. This result indicated that bedrock geology should be 

considered in the MAHA region as well; especially due to the overlapping states found in 

the Southern Appalachian and Mid-Appalachian regions. While the EMAP data did not 

include the bedrock geology at each site, this was available from Geographic Information 

Systems (GIS) models as determined by state geologic surveys. From GIS models, both 

the geological class of bedrock and specific type of rock were supplied. Five classes of 

bedrock were included in this analysis: Carbonate, Argillace, Siliceous, Mafic, and Felsic 

rock. Along with these five classes, a sixth class of bedrock geology was included, called 

Unclassified. This “Unclassified” class consisted of geology that could not be classified 

as any of the five above. For example, sand and gravel were not included in any of the 

five classes above, so they were lumped together in the “Unclassified” class.  

 The bedrock geology information initially provided for this analysis consisted of 

geology at the sampled site. Data on the geology above each sampled site was not 

summarized or available at the time of our initial analysis, but would have been more 
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useful. The characteristics of any stream site depend upon the characteristics of the 

watershed above that site. Although the bedrock geology at the sampled site was 

informative, knowing the bedrock geology in the watershed above the site would most 

likely have given a clearer picture of the impact on ANC of bedrock geology (See 

Section IV for further discussion on this subject). 

 Also available from GIS modeling were elevation and Strahler stream order. From 

previous analyses (e.g. Sullivan, et al, 2002), it was anticipated that site elevation would 

be a significant predictor of acid neutralizing capacity. It should be noted that site 

elevation was also included in the original MAHA data, but information was not 

complete for all sites. 

 Strahler stream order (Strahler, 1964) is a method of designating the location of a 

stream segment in a stream network. A Strahler order of 1 indicates a headwater reach of 

a given stream. When two streams of order 1 merge, a stream is subsequently classified 

as a second order stream.  Where two streams of order 2 merge, a stream is subsequently 

classified as a third order stream. And so on. In general, when two streams of the same 

order merge together, a stream section with a higher Strahler order code is created. When 

two streams of different order merge together, the resulting stream has Strahler order 

equal to the maximum of the two previous orders. Strahler order is a very approximate 

measure of stream size. 

 Finally, GIS modeling generated locations for the sampled sites using Alber’s  

Equal-Area Projection Coordinates (Alber’s Equal Area Conic, 2002). Latitude and 

longitude were also available for each site, but we elected to use the Alber’s coordinate 

system to map locations. Both coordinate systems do tend to distort Euclidean distance, 
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but Euclidean distance using Alber’s Equal-Area Projection coordinates tends to be less 

distorted than Euclidean distance computed using Latitude and Longitude (Theobald, 

2002). For example, in the MAHA region, one degree of longitude is approximately 75 

miles in length. One degree of latitude is approximately 60 miles in length. If a given site 

is selected and the number of sites with a radius of one degree are counted, the maximum 

distance between sites could be anywhere between 60 and 75 miles away. Therefore, the 

interpretation of Euclidian distance from one point to another depends not only upon the 

distance in degrees but the angle between the sites. Alber’s Projection Coordinates have 

the same interpretation of distance in both the N/S and E/W directions  

Thematic Mapper satellite imagery was available for 515 of the possible sites, and 

488 of those 515 sites included data for both satellite imagery and ANC. 

The following predictors formed the basis of the prediction model analysis: 

• Elevation 

• Strahler Stream Order 

• Bedrock Geologic Class 

• Alber’s Projection Coordinates 

• 15 Thematic Mapper Satellite Imagery classifications (Table 1) 

 

D. Availability of Data for Sampled Sites 

Incomplete data was a concern in this analysis. It was previously stated that 

EMAP had sampled 579 sites resulting in 699 individual observations of the response, 

ANC. After the elimination of the five identified outliers, the data consisted of 574 sites 
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resulting in 694 observations. Elevation, Strahler stream order, and Alber’s projection 

coordinates were available for all 574 sites. But bedrock geology and TM satellite  

Figure 3: ANC Sites Identified by Bedrock Geologic Class

Not Available
Siliceous
Argillace
Carbonate
Mafic
Felsic

 

imagery data were not available for all 574 sites. In fact, a vast majority of sites were 

missing one of those two groups of variables. 

Knowing that geology was most likely a significant predictor of ANC, we needed 

the bedrock geology for each of the sites included in the analysis. But at the time of the 

original data analysis, bedrock geologic data for sampled sites in Pennsylvania were not 

available.  Thus, all sites for which bedrock geology was unavailable were eliminated 

from the analysis (Figure 3). This resulted in the elimination of 293 sampled sites, or 

about half of the possible observations, leaving only 345 of the original 699 observations. 

The number of sites available for analysis continued to decrease when Thematic 

Mapper satellite imagery information was added to the data. Including the available TM 

information at sampled sites left us with 292 observations at 242 sites. 
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The issue of repeated observations at sample sites also needed to be addressed. 

Out of the 242 sites where complete predictor and response information were available, 

only 21 of these sites were visited more than once. The concern was that the multiple 

observations at these 21 sites would have more influence on the eventual model by 

weighting these sites more than the 221 others. To ensure that each site would contribute 

equal weight to the eventual model estimate, all observations except the first visit to each 

site were eliminated. 

Out of the 242 identified sites, four belonged to the “unclassified” geologic class. 

Due to the small number of sites within this class and the lack of a cohesive interpretation 

for this geologic class, these three sites were not included in the analysis. 

Therefore, after starting out with 699 observed values of ANC in the MAHA 

region, the final data set consisted of 238 observed values at 238 individual sites, with 

complete response and predictor information at each site. This data set will be referred to 

as DARM (Data Assisting Remote Modeling). 
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III. Overview of ANC and Predictors of ANC  

       in the MAHA Region 

A. Acid Neutralizing Capacity  

Even after several observations were eliminated from the EMAP study, acid 

neutralizing capacity for the DARM data set still had a significantly skewed distribution 

(Figure 4). The summary statistics for the distribution of ANC are listed in Table 3. The 

range of ANC in DARM was very large, from –194 to 5620 µeq/L. Further, the median 

of 336 indicated that a majority of the sites were indeed not sensitive to acidification. 

Only 30.7% of the observed values of ANC were between 0 and 200, the range that 

would be considered sensitive. Therefore, it appeared that the original decision to look at 

the full range of ANC levels was most likely the correct one. 

All of the 238 sites included in the DARM data set described above were located 

in Virginia and West Virginia (Figure 5). In Figure 5, circles are centered on the sampled 

site with diameter size representing the relative magnitude of positive levels of ANC. 

Triangles represent the location of a sampled site with the size of the triangle representing 

the relative magnitude of negative levels of ANC. The large, positive values of ANC 

tended to lie at the base of the eastern slope of the Appalachian Mountains. There were 

also some large values of ANC at the base of the western slope of the Appalachian 

Mountains as well, but they were not nearly as numerous. Small ANC levels were 

scattered throughout the region. Sites with negative ANC values, of which there are only 

nine, all appear near the peak of the Appalachian Mountains. 
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Figure 4: Distribution of ANC from DARM

 

Figure 5: ANC Sites Designated by Magnitude
(Circle = Positive, Triangle = Negative)
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Table 3: Summary Statistics for ANC (µeq/L) 

Mean   924 
Median   336 

Minimum -194 
1st Quartile   130 
3rd Quartile 1138 
Maximum 5620 

 

The distribution of ANC in each of the Thematic Mapper classes was skewed as 

well. By comparing the mean and median of each of the thirteen Thematic Mapper 

classes, each distribution appeared highly skewed to the right, except for Deciduous 

Forest (Table 4). Four out of the thirteen TM classes did not appear in over half of the 

watersheds sampled, demonstrated by having a median of zero. This absence of certain 

landscape characteristics in the watershed above a sampled site was very prevalent in 

each of the TM variables, except for Deciduous Forest, which was identified somewhere 

above each of the sites in DARM. Deciduous Forest was the dominant land cover in the 

MAHA region, for the average percentage of each watershed above a sampled site 

covered by deciduous forest is 63.8%. 

 Finally, the distribution of elevation ranged from a minimum of 81 meters above 

sea level to a maximum of 1172 meters (Table 4), and was approximately normally 

distributed. 

Plots of each of the predictors versus acid neutralizing capacity were created in an 

attempt to detect any initial relationships between the two. Few of these plots revealed 

any bivariate relationship between the predictors and ANC. The only predictor that 

revealed any sort of significant relationship was bedrock geology (Figure 6). Sites that  
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Table 4: Summary Statistics of Percentage of Watershed TM Classifications 

TM Variable Me
an 

Median Minimum 1st Quartile 3rd Quartile Maximum 

Transitional 0.36 0.01 0.00 0.00 0.16 9.32
Quarry 0.43 0.00 0.00 0.00 0.00 26.15
Emergent 0.06 0.00 0.00 0.00 0.03 2.12
Woody 0.12 0.00 0.00 0.00 0.02 5.66
Deciduous 63.80 67.73 6.57 48.70 81.81 98.86
Mixed 12.08 10.57 0.00 6.96 15.97 46.90
Evergreen 5.84 2.45 0.00 0.66 7.54 73.51
Probable 7.99 3.20 0.00 0.21 12.51 72.22
Row Crops 2.33 0.72 0.00 0.11 2.42 21.29
Pasture 6.27 1.74 0.00 0.03 8.79 56.00
Water 0.14 0.03 0.00 0.00 0.13 3.46
Urban – Low 0.51 0.01 0.00 0.00 0.12 29.97
Urban – High 0.07 0.00 0.00 0.00 0.00 7.74
 

Table 5: Summary Statistics for Elevation (m) 

Mean Median Minimum 1st Quartile 3rd Quartile Maximum 
548.5 534 81 369.8 707.8 1172 

 

Table 6: Bedrock Geologic Class – Approximate Percentage of 238 Sites 

Geologic Class Argillace Carbonate Felsic Mafic Siliceous 

Percentage of DARM Sites 46% 13% 11% 3% 27% 

 

Table 7: Strahler Stream Order – Approximate Percentage of 238 Sites  

Strahler Stream Order Order 1 Order 2 Order 3 

Percentage of DARM Sites 41% 26% 33% 
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lay on carbonate bedrock appeared to have significantly higher values of ANC associated 

with them than each of the four other geologic classes. 

A nonparametric Kruskal-Wallis test indicated an association between bedrock 

geologic class and acid neutralizing capacity. A test of the equality of  variances within 

geologic classes indicated that the variances should be regarded as unequal. Therefore, 

the nonparametric Kruskal – Wallis rank test was used instead of a typical analysis of 

variance. The p-value for this test was less than 0.001. So, it could be concluded that 

there was a significant difference between the geologic classes.  Multiple pairwise 

comparisons between geologic classes were constructed using the average class rank in 

order to see which of the geologic classes were significantly different (Neter, Kutner, 

Nachtsheim, and Wasserman (NKNW), 1996, p.777-780). Table 8 gives the results of 

these comparisons at a family error rate of 0.05. Each of the pairwise comparisons 

involving carbonate did not include the value of zero, indicating a  
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Table 8: Pairwise Rank Comparisons of Bedrock Geologic Classes 

 

Pairwise Comparison Lower Bound Upper Bound Significant Difference?

Argillace – Carbonate -119.3  -40.7 Y 

Argillace – Felsic   -37.6   48.0 N 

Argillace – Mafic   -61.4   80.2 N 

Argillace – Siliceous   -28.5   34.3 N 

Carbonate – Felsic     33.2 137.2 Y 

Carbonate – Mafic     12.8 166.0 Y 

Carbonate – Siliceous     41.6 126.2 Y 

Felsic – Mafic   -74.3   82.7 N 

Felsic – Siliceous   -46.9   44.2 N 

Mafic - Siliceous   -78.0   67.0 N 

significant difference between ANC at sampled sites that lie on carbonate bedrock and 

those that do not. No other geologic classes had ANC values that were significantly 

different. 

 

B. Relationships Among Predictors of ANC 

 Although none of the predictors had a significant linear relationship with ANC, 

several of the predictors did appear to have slight relationships with one another. There 

was an apparent negative relationship between percent deciduous forest and percent 

evergreen forest (Figure 7). This relationship can be easily explained. There exists only a  

 18



% Evergreen Forest

%
D

ec
id

uo
us

 F
or

es
t

0 20 40 60

20
40

60
80

10
0

Figure 7: Relationship Between Evergreen Forest 
and Deciduous Forest

% Probable Row Crops

%
 R

ow
 C

ro
ps

0 20 40 60

0
5

10
15

20

Figure 8: Relationship Between Probable Row Crops 
and Row Crops

 

finite area in each watershed. If part of a watershed is covered exclusively by deciduous 

forest, then the available area to be covered by evergreen forest is diminished. The  

strength of the negative relationship between percent deciduous forest and percent 

evergreen forest may in part due to deciduous forest making up a majority of the 

examined watersheds. With such a large percentage of the total area covered by 

deciduous forest, the smaller percentage must be split between twelve (fourteen) different 

landscape types. 

This negative relationship was not as common between each of the other TM 

classifications. In fact, many of the TM variables shared positive, rather than negative, 

relationships.  

One of the most interesting positive relationships was between percent row crops 

and the portion of each watershed designated as percent probable row crops (Figure 8). It 

appeared from the figure that not one but two relationships were present. For some 

watersheds, as percent row crops increases, percent probable row crops increases as well, 

but at a slower rate. In other watersheds, the relationship is reversed such that as percent 

probable row crops increases, percent row crops increases at a slower rate. The reason for 

this positive relationship most likely lies in the difficulty interpreting and classifying land 
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cover based upon satellite imagery. Probable row crops “will sometimes be confused 

with other areas, such as grasslands that were not green during times of spring data 

acquisitions” (Vogelmann, 2002). The line between classifying a 30m resolution pixel as 

row crops or as probable row crops may be very slight. In retrospect, it may have proper 

to combine these two TM predictors into one class, but that was not done in this analysis. 

 In discussions with Dr. Alan Herlihy of Oregon State University, it was pointed 

out that none of the predictors included in the analysis are completely independent. In 

fact, each of the Thematic Mapper classifications are related to each other, as well as to 

geology and elevation. For example, certain bedrock types may be found predominantly 

at certain elevations and may be related to certain types of soils. Each of the predictors 

blend together and influence one another in some way. Therefore, at all stages of 

analysis, care was taken to examine the relationships between predictors to see if any 

significant relationships could be determined. 

 

C. An Initial Model to Predict ANC 

 To further explore the relationship between ANC and the explanatory variables, 

an initial linear regression model was fit using all identified predictor variables. After 

fitting this model and examining the corresponding residual plots, it appeared that several 

of the variables needed to be transformed in order to meet the basic assumptions of a 

multiple regression model. In fact, the only four of the continuous variables that were not 

transformed were elevation, percent probable row crops, percent row crops, and percent 

deciduous forest. The other ten continuous variables were all transformed using a natural  
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log to maintain consistency of transformation type. All but one of the Thematic Mapper 

classification variables did have zeros in them, representing 0% of a watershed classified 

as, say, emergent wetlands. Therefore, in order to perform a natural log transform, an 

arbitrary constant of 0.001 was added to each value of those percentages. Also, the 

response, ANC, was transformed using a natural log. An arbitrary constant of 500 was 

added to each value of ANC in order to make all values of the response positive. Once 

these transformations were applied, our normal regression assumptions were 

approximately satisfied. Throughout the rest of the analysis, these transformations were 

used to perform said analysis. 

 After transforming the necessary predictors, some of the relationships between 

predictors became stronger and more obvious. The question of whether or not this made a 

difference in the analysis is something that will be considered in Section III. Here we 

consider basic relationships between some of the transformed predictors. 

 Percent urban –high density and percent urban – low density display a positive, 

linear relationship (Figure 9). Approximately 79 percent of the sites have zero percent 

urban – high density in the watershed above. Those  
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Figure 11: Relationship Between Deciduous Forest 
and Transformed Mixed Forest Percentages

  

sites with zero percent urban – high density have an average of 1% of the watershed 

classified as urban – low density.  

The relationship between percent row crops and percent pasture appeared to be 

curvilinear (Figure 10), if we ignored the point in the lower right hand corner that has a 

large percentage of row crops and no land designated as pasture in the watershed above 

it. This curvilinear relationship was likely caused by the fact that percent pasture was 

natural log transformed but residual plots for percent probable row crops did not indicate 

such a transformation was necessary. 

 The relationship between Deciduous Forest and Mixed Forest (Figure 11) may be 

explained in a manner similar to the relationship between the percent agriculture 

variables (Figure 10). There did appear to be a curvilinear relationship between 

Deciduous Forest and Mixed Forest, but the curve was not as pronounced as the above 

relationship between percent probable row crops and natural log transform of percent 

pasture. Two sites had large percentages of deciduous forest, but no mixed forest above 

the site; arrows point to these point in Figure 11. 

Further, there appeared to be a positive linear relationship between percent mixed 

forest and percent evergreen forest (Figure 12). After disregarding the two apparent  
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influential points in the lower left hand corner, the linear correlation between these two 

predictors was 0.63. 

 Finally, a positive, linear relationship between the two percent wetland predictor 

variables was apparent (Figure 13). When examining only those sites where both 

wetlands classifications did appear in the watershed, the linear correlation between these 

two variables is 0.71. This relationship will be further pursued in Section IV. 

 It was stated earlier that none of these predictors are independent of one another, a 

fact demonstrated by Figures 9 though 13. One would anticipate that watersheds that are 

suitable for growing crops would see large percentages of all three classifications of 

agricultural land cover: row crops, probable row crops, and pasture. Further, land where 

woody wetlands are present would likely be near land where emergent wetlands are 

found.  Are some predictors related in such a way that they are providing the same or 

overlapping information about ANC levels? This question will be addressed in Section 

IV. 
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IV. Selecting Predictors of ANC for a Non-Spatial Model 

  Can the observed relationships between ANC and the model predictors examined 

in Sections II and III be combined in such a way that an accurate prediction of ANC in 

the MAHA region can be made? In this section, we will examine an initial attempt at 

using the identified predictors to create a model for predicting ANC. We will also 

perform some preliminary analysis on the results and accuracy of this model. 

 

A. Final Set of Predictors 

 The final DARM data set included 13 Thematic Mapper classification variables, 

five classes of bedrock geology, three classes of Strahler stream order, and elevation. 

Thus, there are 22 possible predictors. Because both bedrock geology and Strahler stream 

order are categorical variables, dummy indicator variables were created for four of the 

five bedrock geology classes (Argillace, Carbonate, Felsic, and Siliceous) and two of the 

three Strahler stream order classes (Stream order 2 and 3). The appropriate 

transformations of the predictors and response identified during the exploratory analysis 

were used in selecting a model. 

 

B. Model Selection Procedures  

 Although initial analysis examining the relationships between ANC and the model 

predictors gave us an idea of which predictors should be include, it was unknown which 

combination of predictors, in conjunction, would yield the most accuracy. In order to find 

the best set of model predictors for predicting ANC, linear regression was initially used 

to select a model. Two different model selection procedures returned similar results.  
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Table 5: List of Final Model Predictors (Final – ANC) 

% Pasture 
Elevation 
% Quarry 

% Probable Row Crops 
% Woody Wetlands 

% Emergent Wetlands 
% Urban – High Density 

Carbonate Bedrock 
Felsic Bedrock 

 

Efroymson’s forward stepwise model selection procedure (Seber, 1977, p.376-377) was 

performed with all 20 predictors, using the Splus function ‘stepwise’. The ‘forward’ 

process begins with a model consisting of an intercept only. Each forward step consists of 

adding to the current model that predictor variable giving the largest reduction of the 

residual sum of squares provided a certain level of significance or F-to-enter value. The 

stepwise process of the model selection procedure refers to the possible addition or 

deletion of predictors in the current model. When an independent variable is added to the 

model, partial correlations between the variables in the model and the response are 

considered to determine whether any of the predictors can be eliminated (based upon a 

specified F-to-exit value). Therefore, the number of predictors, p, increases and/or 

decreases at each step based upon the specified selection parameters, typically resulting 

in a “final” predictive model for the response. Using the default settings in Splus of an F-

to-enter and F-to-exit value of 2, the final model produced by this selection procedure 

produced the subset of predictors of the natural log transform of ANC given in Table 5. 

This set of predictors will be referred to as Final – ANC. 

 The Leaps and Bounds model selection procedure (Furnival, 1974) was used in 

addition to Efroymson’s forward stepwise model selection. The Leaps and Bounds  
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Figure 14: Results from Leaps and Bounds Model Selection Procedure

 

selection procedure examined all possible subsets of predictors, returning the best models 

of each subset size based upon a designated criteria. The criterion considered was 

minimum Mallow’s Cp. Mallow's Cp estimates the total model mean square error divided 

by the true error variance (NKNW, 1996, p.341-345). 

The leaps and bounds procedure using Mallow’s Cp returned a minimum value of 

5.48. This model corresponded to the model selected by Efroymson’s stepwise procedure. 

Using the Cp criterion for model selection, Cp values for a model greater than the number 

of predictors, p, indicates model bias, or an inflation of the error variance. When Cp is 

less than the number of model predictors, the model is “interpreted as showing no bias.” 

This result is attributed to sampling error. Figure 14 plots the minimum Cp values for the 

best model of each size, with the estimated intercept included as one of the predictors. 

The line, p = Cp, is included for perspective. Figure 14 displays that the set Final – ANC 

produces the overall minimum Cp in the Leaps and Bounds model selection procedure. 
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Table 6: Liner Regression Parameter Estimates for Final – ANC Model 

Predictor Coefficient Standard Error P-value 
(Intercept)  7.506   0.157 <0.001 
Probable  0.012   0.004 <0.001 
Pasture  0.051   0.011 <0.001 

Urban High Density  0.063   0.019 <0.001 
Emergent Wetlands  0.046   0.021   0.033 
Woody Wetlands -0.073   0.019 <0.001 

Quarry  0.020   0.012  0.084 
Carbon  0.542   0.101 <0.001 
Felsic -0.273   0.102   0.008 

Elevation -0.001 <0.001 <0.001 
    
 R2 = 0.5781 Overall p-value < 0.0001  

 

The form of Final – ANC is: 

eβY +⋅= X      (1) 

where: 

• = a vector of responses, ln(ANC + 500) Y

• X = a (238 x 10) design matrix of predictors 

•  = a vector of model parameters β

•  ~ N(0,σ ) e I2 ⋅

Using the designated model predictors, the estimated model parameters, standard errors 

and p-values are given in Table 6. 

 

C. Multicollinearity 

 As discussed above, a concern about this model is the possible interrelationships 

between the predictors. One manifestation of this problem is multicollinearity. The term 
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multicollinearity describes a situation where predictor variables are correlated among 

themselves. When multicollinearity is present among predictors in a given model, the 

estimated regression coefficients tend to have large sampling variability (NKNW, 1996, 

p.290). This means that the estimation of the true regression coefficients will vary 

drastically from sample to sample, indicating little information regarding the true 

regression parameters. 

The possibility of multicollinearity within the predictors of Final – ANC was 

examined by calculating the Variance Inflation Factor (VIF) of each predictor in Final 

ANC. The variance inflation factor for predictor, k, is equal to 

( )k
2k R1

1VIF
−

=  

where  is the coefficient of multiple determination when a predictor  is regressed 

on the p-2 other predictors in the model (NKNW, 1996, p.385-388). Typically, a variance 

inflation factor of 10 or more indicates the presence of multicollinearity between two or 

more of the model predictors. The variance inflation factors of the final nine predictors, 

plus one, were examined. It was previously noted that the two % urban TM variables 

appeared to be related. Therefore, % urban – low density was included in order to see if 

this previously identified association significantly altered the model Final – ANC. The 

results of the VIF analysis are listed in Table 7. None of the calculated variance inflation 

factors were greater than ten. Therefore, multicollinearity did not appear to be present 

within these ten predictors, at least as measured by the VIF. 

k
2R kX
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Table 7: Variance Inflation 
Factors of Final – ANC plus %
Urban – Low Density 
Predictor VIF 
% Probable Row Crops 1.73 

% Pasture 1.90 
% Emergent Wetlands 2.37 
% Woody Wetlands 2.12 

% Urban – Low Density 3.10 
% Urban – High Density 2.20 

% Quarry 1.27 
Elevation 1.17 

Carbonate Bedrock 1.34 
Felsic Bedrock 1.13 

he VIF values were greater than 10, it was noted that the 

ed to the two percent urban area predictors, as well as the two 

s. The relationships between these variables and the effect of 

 certain combinations of these variables were examined 

ove ten predictors were included in a regression model, each 

t the α = 0.10 level of significance except for percent urban – 
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 model, the resulting predictors were the same ones identified 

 

ercent urban predictors were included in the model, only 
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wetland predictors were included in a model, both predictors were significant, but their 

regression coefficients indicated opposite effects on acid neutralizing capacity.  Percent 

woody wetlands had a negative coefficient and percent emergent wetlands had a positive 

coefficient. 

Percent woody wetlands was always significant at the 0.01 level of significance in 

the model without percent emergent wetlands. But when excluding percent woody 

wetlands from the possible regression models, percent emergent wetlands quickly 

became insignificant with p-values greater than 0.50. Further, the coefficient was always 

negative for each percent wetlands predictor when only one of the two was included in a 

model. 

Therefore, the following conclusions regarding the relationships between the 

percent wetlands and percent urban predictor variables can be made: 

 The two percent urban variables provide nearly equivalent information 

about ANC; only one of the two needs to be included in the final model. 

 Percent emergent wetlands was not a significant predictor of ANC, but its 

negative relationship with percent woody wetlands did significantly affect 

the predictive ability of a regression model. Due to this relationship, either 

both or neither of them should be included in the final model. The 

scientific reasoning for this is unknown. 

Therefore, given the available information regarding the location and landscape 

surrounding each of the sampled stream sites, the simplest and most informative least 

squares regression model for predicting acid neutralizing capacity included the predictors 

identified as Final – ANC. 
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Figure 15: Individual 95% CI for E(ANC)
(Sorted by Original ANC Response)

 

D. Some Concerns About The Inferences From The Final – ANC  

     Regression Model  

 How well did the Final – ANC model acid neutralizing capacity? Figure 15 

displays individual 95% confidence intervals for the expected value of ln(ANC+500), 

sorted by actual levels of ANC. The first confidence interval corresponds to the lowest 

observed value of ANC. As the observed level of ANC increases, the expected value of 

ANC tends to increase as well. This is not a strong relationship. Several low values of 

observed ANC are associated with very high predicted levels of ANC at that site. 

Likewise, some high levels of observed ANC predict low levels of ANC based upon the 

model, Final – ANC. This indicates that Final – ANC may not do a satisfactory job of 

predicting acid neutralizing capacity. Note the confidence intervals presented here are 

individual confidence intervals  
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Figure 16: Individual 95% CI for E(ANC)
(Sorted by Expected ANC Response)

 

 

and thus do not account for the probability of a type I error when 238 intervals are 

computed. 

 A potential problem is presented in Figure 16. Figure 16 displays the same 

individual 95% confidence intervals for the expected value of ANC sorted by the 

expected value of ANC. When the expected value of ANC is low, the confidence 

intervals are narrower than when the expected value of ANC is high. There may be two 

possibilities for explaining this observation. First, the distribution of ANC is highly  

skewed, and a large majority of the data lies between 0 and 1000 µeq/L. Therefore, the 

uncertainty surrounding the estimates of ANC at lower levels is smaller due to the 

increased amount of available information. Second, the variance of the response, ANC, is 

not constant. Previous studies have indicated that ANC is heterscedastic, i.e. as ANC 
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increases from zero, the variance increases as well (Stodderd, Urquhart, Newell, and 

Kugler, 1996). This issue will be considered further in Section VI. 

 The concerns described here led us to consider extensions of the multiple 

regression model described above. In Section V, we consider a model to account for 

spatial correlation between observed ANC values. 
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V. Modeling the Spatial Correlation Between ANC Values 

 The multiple regression model with the Final – ANC predictors did not appear to 

do a satisfactory job of explaining acid neutralizing capacity in this portion of the MAHA 

region. The ecological nature of the research led to a question of possible spatial 

correlation in the hope of better explaining the observed variability of ANC. Given the 

model Final – ANC, can it be concluded that there is spatial correlation in the residuals of 

this model, i.e. is there spatial correlation present in acid neutralizing capacity that cannot 

be explained by a linear regression model with independent errors (Figure 17)? 

 The environmental nature of the problem indicated the possibility of spatial 

correlation between ANC at streams that are in close proximity. The closer stream sites 

are to one another, the more likely they will exhibit similar features. Analysis of spatial 

correlation examines the relationship of the response between sites based upon the 

distance, and possibly direction, between those given sites. The model Final – ANC 

assumed that the responses at each sampled site were independent, but sampled sites that 

were close to one another likely shared characteristics such as elevation, topography, 

bedrock geology, etc. This would mean that the errors of our linear regression model 

would likely be dependent. If this were true, knowing ANC at one site may tell us 

something of the value of ANC at another site. By choosing to investigate the spatial 

relationship between sampled sites, we hoped to explain more of the observed variation 

in ANC than was accounted for by the Final – ANC model.   

In order to examine whether spatial correlation existed within the residuals of the 

model Final – ANC, we elected to examine spatial correlation as measured by Euclidean 

distance rather than limit our analysis to spatial correlation between sites within a single  
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Figure 17: Residuals of Regression Model by Magnitude
(Circle = Positive, Triangle = Negative)

 

stream or watershed. Sites located on the same stream are likely related. Stream sites 

located close to one another but on separate streams may also be related, but this 

relationship may be different from the relationship between ANC values for different 

streams. Unfortunately, the DARM data did not have sufficient data for individual 

streams or watershed to model these relationships. Therefore we considered spatial 

correlation based on Euclidean Distance. 

 

A. Alber’s Equal Area Projection Coordinates 

 The location of each sampled site was identified using Alber’s Equal Area 

Projection coordinates and Euclidean distances between sampled sites were calculated 

using these coordinates as well. Both projection coordinates were centered and divided 

by 100,000. This was done to maintain the equal area relationship between the X (East 

and West direction) and Y (North and South direction) coordinates of the projection 
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system as well as make using the coordinates more manageable numerically. On this new 

scale, a Euclidean distance of one represents approximately 65 miles, a distance of two 

represents 130 miles, etc. The maximum distance between any two sampled  

sites was approximately 350 miles, or roughly 5.2 on our coordinate scale. Therefore, we 

considered a maximum Euclidean distance of 2.6 for our analyses of spatial correlation, 

or half the observed maximum distance (Webster and Oliver, 2001). 

 

B. Basics of Spatial Correlation 

Spatial correlation is typically estimated using variograms or semi-variograms. A 

variogram estimates the covariance between two sites separated by a given distance, h.  

The semi-variogram is: 

γ(h) = (1/2)var[(Y(s) - Y(s + h)]          (2)   

where 

Y(s) = µ + ε(s)  

is a stationary random process with mean µ and covariance function 

C(h) = E[ε(s) ε(s+h)]. 

The semi-variogram is one half the variogram, but the two terms are used 

interchangeably (Webster and Oliver, 2001, p.54). If the spatial process is second-order 

stationary, then the variogram and covariance are equivalent with the following 

relationship, 

γ(h) = C(0) – C(h). 

Second-order stationarity means that the mean of the spatial process is location invariant 

and the autocorrelation between two values of the spatial process depends only on the  
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Figure 18: Sill Variance, Nugget Variance, and Correlation Range 

distance between the locations (Thompson, 2001, p.13). For our model, Y(s) is the ANC 

value at location s and µ is the regression function estimated from (1) assuming 

independent errors. 

 There are three characteristics that are typically included in any spatial covariance 

function: the nugget variance, sill variance, and correlation range (Figure 18). The nugget 

variance, or nugget effect, occurs when a spatial process is discontinuous as the distance, 

h, approaches zero, i.e.  

0)0(lim 0h ≠γ→  

This nugget effect could possibly be attributed to measurement errors in the data 

values or to very small-scale irregularities near the sampled site (Ripley, 1981, p.50). The 

sill variance is typically the a priori variance of the process, σ2 (Webster and Oliver, 

2001, p.111).  
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The correlation range is the range of spatial dependence. Sites separated by a distance 

greater than the correlation range are assumed to be spatially independent. 

If spatial correlation is isotropic, then the correlation between two sites is based solely on 

the distance between those sites regardless of the directional relationship between them. 

The relationship between all sites and a given sampled site a set distance from that given 

site is considered the same, no matter what the direction. This is also termed omni-

directional spatial correlation. Anisotropic spatial correlation examines correlation based 

on distance and a given direction from one site to another. If anisotropy is present, the 

correlation between a given site and all sites a set distance from that site changes as the 

angle of the relationship changes. This is also termed directional spatial correlation. 

 The analysis of spatial correlation was performed using several functions from the 

Spatial Library for Splus created by Dr. Robin Reich and Dr. Richard Davis of Colorado 

State University. All of the variograms and variogram modeling was performed using 

their Splus code. 

 

C. Isotropic Spatial Correlation 

 At a maximum distance of 2.6, the omni-directional semi-variogram (Figure 19) 

indicated that there was little or no spatial correlation present in the residuals of Final – 

ANC.  Therefore, it appeared that Final – ANC did account for the assumed spatial 

correlation in the response. However, further analysis indicated that an omni-directional 

analysis was deemed inappropriate for this region. 
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Figure 19: Omnidirectional Variogram of Final-ANC Residuals

 

D. Anisotropic Spatial Correlation 

 The general direction of sampled sites in the MAHA region of Virginia and West 

Virginia closely follows the Appalachian Mountains, which run in a SW-NE direction. 

Any spatial correlation in this region would likely run in that specific SW-NE direction, 

rather than in all directions. 

Anisotropic spatial correlation looks at the spatial correlation in a given direction 

from any given point. Given a certain direction and span from a sampled site, only points 

that fall within that span are used to calculate the correlation between sites. The angle of 

the span, dθ, is the size of the angle above and below the angle of correlation, θ. If a site 

does not lie within the specified angle and span, the correlation between the two sites is 

assumed to be zero. Figure 20 displays the presented concept. In Figure 20, the angle of 
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correlation is θ = 45˚ and the span is dθ = 15˚. Any sites within the angles 30˚ and 60˚ of 

a given site are examined for correlation. Further, the correlation is examined  

 Figure 20: Anisotropic Spatial Correlation for Site at Longitude and Latitude (x,y). 

       

 

θ=45˚

dθ=15˚ 

Site (x,y) 

    = site not correlation 
 with site (x,y) 
    = site correlated with 
 site (x,y) 

in both directions. When the angle of correlation is 45˚, 45˚ + 180˚ = 225˚ is also 

included in the correlation/covariance calculation. Therefore, from a given site, possible 

spatial correlation exists only with sites that lie between 30˚ and 60˚ or 210˚ and 240˚ 

from the given site(x,y). If the angle between two sites does not fall within the stated 

ranges, it is assumed no correlation exists between those two sites. 

 In order to examine the possible anisotropic (directional) spatial correlation found 

in the residuals of the Final – ANC regression model, semi-variograms were estimated at 

different angles (θ = 0º to 165º) and different spans (dθ = 5º to 60º).  

At different angles (θ), the spatial correlation within the residuals shifted. As 

expected, the semi-variograms for θ = 0º to 165º showed vast differences. In particular, 
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there appeared to be significant spatial correlation between the angles (θ) of 40° and 60°. 

At all other angles the spatial correlation was minimal. 

 One specific result based upon the angle of correlation was given special notice. 

At 90° angles to the aforementioned range of maximum spatial correlation (40° to 60°), 

no correlation in the residuals was present until a Euclidean distance between points of 

approximately 1.5. At this point, the residuals appeared to become correlated again. 

While the direct cause of the association was not known, it was conjectured that the 

apparent correlation between points at this distance whose relationship was between 130° 

and 150° was due in some respects to the Appalachian Mountains themselves. Stream 

sites that share similar characteristics yet are located on opposite sides of the Appalachian 

Mountains may be the cause of this observed correlation. While the angle of maximal 

correlation runs parallel to the mountains, the angle at which this possible “hole effect" 

was observed runs perpendicular to the mountains. 

Two different trends were observed when examining the effect of increasing the 

span (dθ) at a given angle of correlation (θ). As the span increased, the variability within 

the semi-variogram decreased for dθ between 5° and 30°. This was most likely due to the 

increased number of pairs of points included in the calculations for the semi-variogram, 

increasing precision.  At very small spans (i.e. 5° to 15°), there may not have been 

enough information available to get a clear picture of the spatial correlation between 

points at a given distance of separation. But as the size of the span increased, the 

observed uncertainty in the spatial correlation at a given distance decreased, creating a 

“smoother” semi-variogram.  
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 Secondly, it appeared that given a specific angle of correlation with a span 

between 15° and 60°, the effect of the span on the possible spatial correlation was 

minimal. At a given angle of correlation, the semi-variograms differed only slightly as 

the span increased within the stated range (Appendix C). 

 

E. Anisotropic Spatial Model Selection 

 Semi-variograms (2) were calculated at several different combinations of angle 

and span in order to the find the direction and span of maximal spatial correlation. Many 

of these combinations produced semi-variograms that were similar in appearance. 

Therefore, in order to select the “best” model based upon the available information, two 

classes of covariance functions were fit to each semi-variogram: spherical and 

exponential. 

  

The spherical variogram function is (Webster and Oliver, 2001, p.114): 
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 c = sill variance 

 c0 = nugget variance 

 d = correlation range 
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The exponential variogram function is (Webster and Oliver, 2001, p.121): 
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where: 

 c = sill variance 

 c0 = nugget variance 

 d =  range parameter 

 3·d = correlation range  

     

 For selection of the optimal combination of direction and span, the first point of 

each semi-variogram was eliminated from the covariance function estimation procedure. 

This point, (0,0), was produced by default by the Splus function 'variogrm', indicating 

that at a distance of h = 0, the estimated variance is zero. This was determined to be 

inappropriate because acid neutralizing capacity at a given site is not constant. There is 

variability in ANC at a given site. Therefore, this point was disregarded and only the 

estimated correlations at positive distances were used to calculate the covariance 

functions.  

 The function 'fitvar1' was used to fit each of the exponential and spherical 

covariance models in Splus (Code attached in Appendix D. 'Fitvar1' represents the 

described modification from the Splus function 'fitvar'). If the covariance class was 

designated as exponential, the 'fitvar' function estimated the parameters of the 
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exponential function to a given semi-variogram model. This Splus function used the non-

linear minimization algorithm 'nlminb' to find the best combination of nugget variance,  
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Figure 21: Variogram of Theta=45 and Dtheta=35 Including
Exponential Model ANC - Spatial

 

sill variance, and correlation range for a given model type that minimizes the function 

error (Webster and Oliver, 1996, p.56-58). The function also estimated Akaike's 

Information Criterion (AIC) (Akaike, 1973). AIC is an order selection criterion used for 

comparing different models. Models with a small AIC relative to other models balance 

accurate estimation of the response and the tendency to overfit the model. 

 For each variogram, the 'fitvar1' function calculated the best estimated spherical 

and exponential variogram models, and Akaike's Information Criterion was examined for 

each of the estimated models. The exponential anisotropic variogram model with an 

angle of correlation of 45º and a span of 35º had the lowest AIC measure. This model 

also had the smallest mean square error (Figure 21). 
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Table 8: Model statistics of Quadratic Trend of Location (Final – ANCquad) 

Predictor Coefficient Standard 

Error 

P-value 

X -0.078 0.051 0.129 
Y -0.082 0.041 0.048 
X2 0.019 0.051 0.706 
Y2 -0.070 0.041 0.089 

X*Y 0.085 0.059 0.151 
 

F. Inclusion of Quadratic Trend of Location of Final – ANC 

 In addition to examining anisotropic spatial correlation within the residuals of 

Final – ANC, a quadratic trend of location was added to the model Final – ANC. Did the 

inclusion of this quadratic trend using Alber’s projection coordinates eliminate the 

observed anisotropic spatial correlation (model Final – ANCquad)? The coefficients, 

standard errors, and p-values of the quadratic trend are presented in Table 8. Including 

the quadratic trend of location had little effect on the observed spatial correlation present 

in the residuals. The isotropic and anisotropic semi-variograms of residuals from Final – 

ANCquad indicated a decrease in the omnidirectional and directional spatial correlation 

from the observed correlation in Final – ANC, but the spatial correlation was not 

eliminated. Therefore, the previously identified anisotropic spatial analysis was deemed 

more appropriate for modeling acid-neutralizing capacity in this portion of the MAHA 

region. 
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G. Summary 
 
 Therefore, the final model anisotropic spatial model, ANC - Spatial, took the 

following form: 

eβY +⋅= X  

where: 

• = a vector of responses, ln(ANC + 500) Y

• X = a (238 x 10) design matrix of predictors 

•  = a vector of model parameters, estimated by the model coefficients in  β

  Table 6. 

•  ~ N(0,C(h)) e

If the angle between sitei and sitej is between 10° and 80° or 190° and 260°, then 







−−+=γ
−

)1)(104.0211.0(104.0)( 565.0
h

 
eh    0  h if ≥

If the angle between sitei and sitej does not lie within 10° and 80° or 190° and 260°,  

then γ(h) = 0.  

The a priori variance of this process is 0.211, the sill variance. This is the 

asymptote of the covariance function which best explains the spatial relationship. The 

estimated nugget variance was 0.104, or approximately 49% of the sill variance. Finally, 

the estimated correlation range was approximately 1.69 with a range parameter for the 

exponential covariance function of 0.565. Any sites separated by more than a Euclidean 

distance of 1.69 were not considered correlated (Figure 21). 
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IV. Conclusions and Future Work 

A. Conclusions 

 The monitoring of acid neutralizing capacity in the Mid-Atlantic Highlands region 

of the eastern United States was mandated by the 1990 Amendments to the Clean Air 

Act. This monitoring takes time, money, and resources to accurately perform. These costs 

could be significantly decreased if an accurate model using remotely sensed information 

were available. In an attempt to meet this goal, I have examined several possible remotely 

sensed model predictors of acid neutralizing capacity, as well as the interrelationships 

between those predictors. Using multiple regression methods, an initial model to predict 

ANC was selected. Although this model did a fair job of explaining the variability in 

ANC, further analysis was required. 

A spatial analysis of the residuals of this multiple regression model indicated the 

presence of anisotropic spatial correlation. The correlation was examined at different 

angles and spans, resulting in a direction of maximal correlation of 45° with a span of 

35°. We then estimated a possible regression model with a directional spatial correlation 

structure from data gathered by the Environmental Protection Agency's Environmental 

Monitoring and Assessment Program, Geographic Information Systems, and Thematic 

Mapper Satellite Imagery.  

 This study concluded that directional spatial correlation between sampled sites 

needed to be accounted for. By not considering spatial relationships between sites, much 

of the variability in acid neutralizing capacity would remain unexplained. Although this 

result was significant, more research needs to be done in this area. Several different areas 
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of future and continuing work were identified, and it is hoped that the results and 

conclusions of this study will be beneficial in future analysis within this region. 

 

B. Future Work 

 During research into spatial modeling of acid neutralizing capacity in the MAHA 

region of the eastern United States, several areas of further research and investigation 

were identified. 

 

1.  Measuring Predictive Ability of Final – Spatial 

 Future researchers may want to consider one or more methods for measuring the 

ability of Final – Spatial to predict acid neutralizing capacity in the MAHA region. First, 

how well does the model predict those observations used to create the model itself? Some 

form of cross-validation procedure would be helpful in assessing the accuracy of the 

model. A cross-validation procedure would take out one observation, refit the model 

using the procedure used to create Final – Spatial, and then see how accurately this 

model predicts the one withdrawn observation. Ideally, the procedure used to create Final 

– Spatial would prove robust, indicating that the accuracy of Final – Spatial was due to 

the modeling method and not a byproduct of the data alone. 

 The second possible method for measuring the predictive ability of Final – 

Spatial is to apply the model to similar areas within the MAHA region, such as 

Pennsylvania, that were not included in the analysis due to lack of information. Many 

sampled sites in Pennsylvania only lacked bedrock geologic data, and were eliminated 

from analysis on this basis alone. During the course of this research, geologic information 
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became available for the state of Pennsylvania. Therefore, a large majority of sampled 

sites in Pennsylvania now have complete predictor and response information. These data 

could be used to test the predictive ability of Final – Spatial in those areas not used in 

creating the model. 

 The third possible method of measuring the predictive ability of Final – Spatial 

involves predicting acid neutralizing capacity at unsampled sites in Virginia and West 

Virginia. Using the resources available through GIS and satellite imagery in conjunction 

with Final - Spatial, predictions of acid neutralizing capacity could be identified at 

specified stream sites. Once these sites have been identified, research teams could take 

samples at those sites, comparing the ANC results from the sample with the prediction 

made by Final – Spatial. 

 

2.  Weighted Least Squares 

 Stoddard, et al. (1990) showed that the variability of acid neutralizing capacity 

increases as the expected value of ANC tends away from zero. The variance of ANC 

increases as the absolute value of ANC increases. This was shown by looking at repeated 

measurements at several bodies of water, then measuring and comparing the mean and 

variance at each body of water. The solution of Stoddard, et al. (1990) to minimize or 

eliminate the effect of heteroscedasticity of the response, ANC, was to perform a 

Weighted Least Squares analysis (e.g., NKNW, 1996, p.400-409), weighting each stream 

by its inverse variance. In order to perform this analysis for the data considered here, 

further research must be done in order to get an accurate estimate of the variability at 
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each level of ANC. In the current analysis, this variability could not be accurately 

estimated due to so few repeated observations at sampled sites. 

 

3.  Bayesian Model Averaging 

 Using the given predictors identified previously, preliminary results indicated 

significant model uncertainty in the data. While a spatial linear regression model was 

identified, initial analysis using Bayesian Model Averaging (Hoeting, 1999) indicated 

that no one subset of predictors could sufficiently predict acid neutralizing capacity in 

this region. We used Adrian Raftery’s 'bic.reg' Splus function (Statlib) to estimate the 

posterior model probability for each subset of predictors. While a few predictors were 

clearly identified as significant, this preliminary analysis indicated that the “best” models 

included a diverse selection of possible model predictors. No one combination of model 

predictors produced a large model posterior probability. Therefore, some form of 

Bayesian Model Averaging approach using available model predictors may produce more 

accurate estimates of acid neutralizing capacity in the MAHA region as compared to 

estimates from a single model. 

 

4.  Increased Number of Model Predictors 

 Due to the exploratory nature of this research and its role the initial stages of the 

STARMAP program at Colorado State University (STARMAP, 2002), lack of 

knowledge regarding available information played a key role in hindering research and 

model construction. The greatest unknown quantity was the vast information available 

through Geographic Information Systems. Misguided assumptions as well as 
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miscommunication further played a role in decreasing the effectiveness of this analysis. 

GIS modeling provided elevation, Strahler Stream Order, Alber’s Projection Coordinates, 

and bedrock geology at each stream site. Most of these predictors displayed relationships 

with acid neutralizing capacity, but there may exist more and better predictors that are 

available and will likely increase the accuracy of a model explaining ANC. 

 It is correct to say that bedrock geology is an important predictor of ANC, as has 

been shown. But the bedrock geology variable used in this study did not take into account 

the geologic impact on streams of different types of bedrock over which the stream flows 

before it gets to the designated site. For example, the geologic bedrock at a given site 

may be argillace, but the majority of geologic bedrock in the watershed above that site 

may be carbonate, mafic, siliceous, etc. The nutrients picked up by the water as it flows 

over carbonate above a site resting on argillace bedrock has not been taken into account 

in our analysis. Like the fifteen Thematic Mapper landscape variables, percentage 

breakdowns of bedrock geology within the watershed above a stream site would provide 

better information on the effect of bedrock geology on acid neutralizing capacity. 

 In discussions with Dr. Alan Herlihy, he also indicated that stream slope also has 

a significant impact on acid neutralizing capacity. Several different classifications of 

slope are available through GIS models, such as slope of the stream at the sampled site, 

watershed slope from highest point in the watershed to the sample site, and maximum 

stream slope.  

 The effect of these variables on acid neutralizing capacity within the MAHA 

region is unknown. But with a larger pool of information to work with, the probability of 
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creating a more accurate model for ANC increases. Therefore, future analysis using these 

expanded and more precise predictors would likely be beneficial. 

 

5.  Stratification / Small Area Estimation 

 Future work should also be done in researching the relationship between 

geographic features or spacing and ANC. There are several issues that could be addressed 

in this area. First, the concept of distance needs to be more closely examined. One 

concern is whether or not Euclidean distance is the best measure for calculating distance 

for these stream-based data? First, when dealing with coordinate systems, such as Alber’s 

Projection or Latitude and Longitude, distortion will occur when calculating Euclidean 

distance. Second, when modeling stream data, some form of hydrologic distance between 

sites may hold more meaning. Further, what is the maximum distance of separation at 

which we would expect sites to still be correlated, i.e. would it be realistic to expect to 

see a spatial relationship between two sites that are 60 miles apart? Therefore, this issue 

and concept of distance between stream sites needs to be more thoroughly examined. 

  The area over which the analysis is done could also be reexamined. Should a 

model cover the entire MAHA region, or should the MAHA region be broken down into 

smaller, more homogeneous units? One possibility is modeling sites separated by 

Hydrologic Unit Code (HUC) as specified by the United States Geological Survey 

(USGS). ANC could also be modeled after stratifying the MAHA region by identified 

ecoregion. However, two problems will arise with either of these stratification 

procedures. First for the EMAP data used in this study, the number of sampled sites per 

HUC or ecoregion is extremely small, indicating the necessary implementation of small 
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area estimation statistical techniques (Ghosh and Rao, 1994). Second, the scale of the 

stratification for HUCs must be determined. Hydrologic Unit Codes are typically eight 

digit numbers that operate much like postal zip codes, with each number representing a 

given area. The first six digits of the HUC describe a given region, and the last two 

describe a subregion. Ecoregion can also be broken down from general regions to more 

specific subregions. How large stratification is necessary to create homogeneous strata 

suitable for analyzing ANC? The strata must be large enough to encompass enough 

information from sampled sites to create a workable model, but not so large that the strata 

are no longer homogeneous.  

 53



References 
 
Acid Deposition Standard Feasibility Study Executive Summary (2002). 29 October  

2002. U.S. Environmental Protection Agency. 19 Nov. 2002 
<http://www.epa.gov/airmarkets/articles/depfeas/> 

 
Akaike, H. (1973). “Information theory and an extension of the maximum likelihood  

Principle”, 2nd International symposium on Information Theory, B.N. Petrov and 
F. Csaki (eds.), Akademiai Kiado, Budapest, 267-281. 

 
Alber’s Equal Area Conic (2002). Universiy of Texas at Austin Maps Library. 19  

November 2002. <http://www.lib.utexas.edu/maps/albers_equal_area.jpg> 
 
Brewer, P.F, Sullivan, T.J, Cosby, J., and Munson, R. (2002). “Acid Deposition Effects  

To Forests and Streams in the Southern Appalachian Mountains”. Southern 
Appalachian Mountains Initiative.  19 November 2002 
<http://www.saminet.org/reports/AWMAacid_326.htm> 

 
Environmental Monitoring and Assessment (EMAP) Home Page (2002). 7 November  

2002. U.S. Environmental Protection Agency (EPA). 19 November 2002  
<http://www.epa.gov/docs/emap/> 

 
Furnival, G. and R. Wilson (1974). “Regression by leaps and bounds.” Technometrics, 16  

499-511. 
 
Ghosh, M. and Rao, J.N.K. (1994). “Small Area Estimation: An Appraisal,” Statistical  

Science, 9:1, 55--93. 
 
Herlihy, Alan (2002). Personal Interview. 23 September 2002. 
 
Hoeting, J. A., Madigan, D., Raftery, A.E., and Volinsky, C.T. (1999). “Bayesian Model  

Averaging: A Tutorial (with discussion),” Statistical Science, 14 :4, 382--417. 
Corrected version available at 
http://www.stat.washington.edu/www/research/online/hoeting1999.pdf. 

 
Jones, K. Bruce, Riitters, K.H., et.al. (1997). An Ecological Assessment of the United 

States Mid-Atlantic Region: A Landscape Atlas. U.S. Environmental Protection 
Agency Publication EPA/600/R-97/130. 

 
Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman, W. (1996). Applied Linear  

Statistical Models. 4th Ed. Boston: McGraw-Hill. 

 54



Reich, R. and Davis, R. (2000). Quantitative Spatial Analysis. Coursepack for ST523.  
Fort Collins, CO: Colorado State University. 

 
Ripley, B. (1981). Spatial Statistics. New York: Wiley. 
 
Seber, G.A.F. (1977). Linear Regression Analysis. New York: Wiley. 
 
STARMAP: Space-Time Aquatic Resources Modeling and Analysis Program Home  

Page (2002). Colorado State University 25 November 2002. 
<http://www.stat.colostate.edu/~nsu/starmap/> 

 
Statlib: Data, Software, and News from the Statistics Community (2002). The  

Department of Statistics at Carnegie Mellon Univeristy. <http://lib.stat.cmu.edu/> 
 
Stoddard, J. L., Urquhart, N.S., Newell, A. D., and Kugler, D. (1996). “The 

Temporally Integrated Monitoring of Ecosystems (TIME) project design – 2. 
Detection of regional acidification trends”. Water Resources Research, 32 (8): 
2529-2538. 
 

Stoddard, J.L., Kahl, J.S., Deviney, F.A., DeWalle, D.R., Driscoll, C.T., Herlihy, A.T.,  
Kellogg, J.H., Murdoch, J.R. Webb, J.R., and Webster, K.E. (2003).  Response of 
Surface Water Chemistry to the Clean Air Act Amendments of 1990.  EPA/620/R-
02/004.  U.S. Environmental Protection Agency, Washington, DC. 
<http://www.epa.gov/ord/htm/CAAA-2002-report-2col-rev-4.pdf> 

 
Strahler, A.N. (1964). Quantitative geomorphology of drainage basins and channel  

networks, section 4-II, Handbook of Applied Hydrology, V.T. Chow (ed.), 
McGraw-Hill, New York, 4-39. 

 
Sullivan, T. J., et al. (2002). “Spatial Distribution of Acid-Sensitive and Acid-Impacted  

Streams in Relation to Watershed Features in the Southern Appalachian 
Mountains”. Water Resources Research, to appear. 

 
Theobald, Dave (2002). Personal Interview. October 2002. 
 
Thompson, Sandra E. (2001). Bayesian Model Averaging and Spatial Prediction. PhD  

thesis, Colorado State University. 
 
Vogelmann, J. (2002). Land cover data layer for EPA Region III. 19 November 2002  

<http://www.webmapping.org/data/ahr_utm_27.htm> 
 
Webster, R. and M.A. Oliver. (2001). Geostatistics for Environmental Scientists. West  

Sussex, England: Wiley. 
. 
 
 

 55



Appendices 
 
 

A. Thematic Mapper Classifications     57 
B. Procedure Used in Acquiring Final Data Set – DARM  58 
C. Estimated Variograms Using Different Directions and Spans 59 
D. Selected Splus Code Used in Analysis     75 
 

 56



Appendix A 
 

Thematic Mapper Classifications 
 
Water: all area of open water, generally with less than 30% cover of vegetation/land  
 cover. 
 
Urban – low density: approximately 50-80% constructed material; approximately 20- 
 50% vegetation cover; high percentage of residential development typifies this  
 class. 
 
Urban – high density: 20% or less vegetation, high percentage (80-100%) building  
 materials; typically low percentage of residential development in this class. 
 
Pasture: areas characterized by high percentages of grasses and other herbaceous  
 vegetation that is regularly mowed for hay and/or grazed by livestock;  
 predominantly hay fields and pastures, but also currently includes golf courses  
 and city parks. 
 
Row Crops: areas regularly tilled and planted, often on an annual or biennial basis; corn,  
 cotton, sorghum, vegetable crops. 
 
Probable Row Crops: sometimes confused with other areas, such as grasslands that were  
 not green during times of spring data acquisitions. 
 
Evergreen Forest: of trees present, 70% or higher conifers. 
 
Deciduous Forest: of trees present, 70% or higher deciduous tree species. 
 
Mixed Forest: both conifers and deciduous tree species present, with neither particularly  
 dominant. 
 
Woody Wetlands: wetlands with substantial amount of woody vegetation present, either  
 trees or shrubs. 
 
Emergent Wetlands: wetlands without a substantial amount of woody vegetation present,  
 usually with substantial amounts of herbaceous vegetation. 
 
Quarry: all quarry areas, including sand and gravel operations, except some spectrally  
 dark coal areas in northern Pennsylvania. 
 
Transitional: areas likely to change to other land cover categories, such as clear cuts. 
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Appendix B 
 

Procedure Used in Acquiring Final Data Set - DARM 
 
 
Data Set #1 (896 observations) 

• This was the data set sent to me by Dave Theobold with data for all sites 
within the MAHA region 

• Data set contained the following: 
• ANC values from EMAP study  
• Elevation, geology (in form of Class and Type), Strahler Stream 

Order, and Albers projection coordinates (X and Y) from GIS 
modeling 

• Changed ANC to double from character 
• Eliminated all sites w/ no ANC values (i.e. no response)  

 
Data Set #2 (699 observations) 

• There were 699 observations from which ANC was found 
• Eliminated five identified outliers 

 
Data Set #3 (694 observations) 

• Eliminated all observations where geologic class was not available 
 
Data Set #4 (345 observations) 

• Merged Data Set #3 and Thematic Mapper Data Set (TM.IMAGE) 
 
Data Set #5 (292 observations) 

• Eliminated all but the first visit to each site 
 
Data Set #6 (242 observations) 

• Eliminated all sites belonging to “Unclassified” geologic class 
 

DARM Set (238 observations) 
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Appendix C 
 

Estimated Variograms Using  
Different Directions (theta) and Spans (dtheta) 
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Appendix D 
 

Selected Splus Code Used in Analysis 
 
 
 
 

 75



Listing of Coded Predictors and Response 
 

pasture_log(darm$pasture+.001) 
probable_darm$probable 
row.crops_darm$row.crops 
decid_darm$decid 
mixed_log(darm$mixed+.001) 
evergreen_log(darm$evergreen+.001) 
urb.hi_log(darm$urb.hi+.001) 
urb.low_log(darm$urb.low+.001) 
emergent_log(darm$emergent+.001) 
woody_log(darm$woody+.001) 
quarry_log(darm$quarry+.001) 
transition_log(darm$transition+.001) 
water_log(darm$water+.001) 
elev_darm$elev 
carbon_darm$carbon 
felsic_darm$felsic 
mafic_darm$mafic 
arg_darm$arg 
silic_darm$silic 
ord2_darm$ord2 
ord3_darm$ord3 
X_scale(darm$X,scale=F)/100000 
Y_scale(darm$Y,scale=F)/100000 
ANC_log(darm$ANC+500) 
lat_darm$LAT.DD 
lon_darm$LON.DD1 

  
Final – ANC Model 

 
model_lm(ANC~probable+pasture+urb.hi+emergent+woody+quarry+carbon+felsic+elev) 

 
 

Code Used in Model Selection 
 

pred_cbind(pasture,probable,row.crops,decid,mixed,evergreen,urb.hi,urb.low, 
 emergent,woody, transition, quarry,water,elev,carbon,felsic,arg,silic,ord2, 

ord3) 
pred1_cbind(pasture,probable,urb.hi,emergent,woody,quarry,elev,carbon, 
 felsic,X,Y,X^2,Y^2,X*Y) 
efroym_stepwise(pred,ANC) 
efroym 
par(mfrow=c(2,2)) 
r2_leaps(pred,ANC,method="r2",nbest=4) 
r2 
plot(r2$size,r2$r2/100) 
title("Leaps: R-squared") 
mallow_leaps(pred,ANC,method="Cp",nbest=4) 
mallow 
plot(mallow$size,mallow$Cp) 
title("Leaps: Mallow's Cp") 
abline(0,1) 
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Code for VIF (from Dr. Jennifer Hoeting) 
 and Multicollinearity Investigation 

 
VIF<-function(X) { 
#Computes Variance Inflation Factors for a Predictor Matrix 
#   See page 386 of NKNW for more on computations 
#INPUTS: 
#X is a matrix (or data frame) of the predictors (no column of ones). 
 
   cat("REMINDER: Your input matrix should not include the response\n") 
   a<-1/sqrt(dim(X)[1]-1)*scale(X) 
   b<-cbind(diag(solve(t(a)%*%a))) 
   dimnames(b)<-list(dimnames(X)[[2]],"VIF") 
   return(b) 
} 
 
pred1_cbind(probable,pasture,urb.hi,urb.low,elev,quarry,emergent,woody, 

carbon,felsic) 
VIF(pred1) 

 
 

Code for Variogram estimation 
(Original code found in Spatial Library created by 

Dr. Robin Reich and Dr. Richard Davis) 
 

variogrm_function(x, y, z, nint, iso = T, theta = 0, dtheta = 0, dmax = 0) 
{ 
 n <- length(x) 
 rx <- range(x) 
 ry <- range(y) 
 .Fortran("frset", 
  as.single(rx[1]), 
  as.single(rx[2]), 
  as.single(ry[1]), 
  as.single(ry[2])) 
 z <- .Fortran("variogram", 
  xp = single(nint), 
  yp = single(nint), 
  nint = as.integer(nint), 
  as.double(x), 
  as.double(y), 
#               if(krig$np == 0) as.double(krig$z) else as.double(krig$w 
z),  
  as.double(z), 
  as.integer(length(x)), 
  iso = as.logical(iso), 
  theta = as.single(theta), 
  dtheta = as.single(dtheta), 
  nsv = integer(nint), 
  dist = single((n * (n + 1))/2), 
  indi = logical((n * (n + 1))/2), 
  dmax = as.single(dmax)) 
 ni <- z$nsv[1:z$nint] 
 xp <- z$xp[1:z$nint] 
 yp <- z$yp[1:z$nint] 
 plot(xp, yp, type = "p") 
 invisible(list(x = xp, y = yp, ni = ni, type = "var")) 
} 
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Adjusted Code for Variogram Model Fitting 
(Original code found in Spatial Library created by  

Dr. Robin Reich and Dr. Richard Davis) 
 

fitvar1_function(dt, a, b, cc, model, wt = F) 
{ 
 x <- dt$x[-1] 
 y <- dt$y[-1] 
 ni <- dt$ni[-1] 
 if(wt == F) 
  ni[] <- 1 
 k <- 3 
 prm <- cbind(a, b, cc) 
 if(dt$type == "var") { 
  lb <- cbind(0, 0, 0) 
 } 
 else { 
  lb <- cbind( - Inf,  - Inf, 0) 
 } 
 if(model == "sph") { 
  mdl <- sph 
 } 
 else if(model == "exp") { 
  mdl <- fexp 
 } 
 else if(model == "gau") { 
  mdl <- gau 
 } 
 else { 
  mdl <- lin 
  prm <- cbind(a, b) 
  lb <- cbind( - Inf,  - Inf) 
  k <- 2 
 } 
 res <- nlminb(start = prm, obj = mdl, x = x, y = y, ni = ni, lower = lb) 
 parm <- res$parameters 
 alpha <- parm[1]/(parm[1] + parm[2]) 
 n <- length(x) 
 ndf <- n - k 
 ssmle <- res$objective/n 
 r2 <- 1 - res$objective/(var(y) * (n - 1)) 
 like <-  - n/2 * log(ssmle * 2 * pi) - 0.5 * n 
 cat(" Least Squares Estimate \n") 
 cat("\n Nugget = ", round(parm[1], 4)) 
 if(model == "lin") { 
  cat("\n Slope  = ", round(parm[2], 6)) 
 } 
 else { 
  cat("\n Sill   = ", round((parm[1] + parm[2]), 6)) 
  cat("\n Range  = ", round(parm[3], 6)) 
  cat("\n alpha  = ", round(alpha, 6)) 
  cat("\n s.e.   = ", round(sqrt(parm[1] + parm[2]), 6),  
   "\n") 
 } 
 cat("\n Log(like)   = ", round(like, 4)) 
 aic <- -2 * like + 2 * (n - ndf) 
 aicc <- -2 * like + (2 * (n - ndf) * n)/(n - (n - ndf) - 1) 
 sc <- -2 * like + (n - ndf) * log(n) 
 cat("\n AIC         = ", round(aic, 4)) 
 cat("\n AICC        = ", round(aicc, 4)) 
 cat("\n Schwartz    = ", round(sc, 4), "\n") 
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 invisible(list(nugget = parm[1], sill = (parm[1] + parm[2]),  
  range = parm[3], alpha = alpha, se = sqrt(parm[1] +  
  parm[2]), slope = parm[2], model = model)) 
} 

 
Code For Creating Several of the Presented Figures 

(Several of the figures required adjustment using the 
 Splus PC version graphical user interface) 

July4 = DARM 
July5 consists of DARM sites with positive ANC 

July5neg consists of DARM sites with negative ANC 
 
hist(site.geo.elev$ANC,nclass=35, ylim=c(0,250),xlim=c(-2200,6000),  
 xlab="Acid Neutralizing Capacity",ylab="# of observations") 
title("Figure 2:Histogram of Acid Neutralizing Capacity 
From Full MAHA Data", cex=1) 
 
arch_split(july4$ANC,july4$class) 
what_boxplot(arch$Argillace,arch$Carbonate,arch$Felsic,arch$Mafic, 
 arch$Siliceous, 
 names=c("Argillace","Carbonate","Felsic","Mafic","Siliceous")) 
 title("Figure 2: Boxplot of ANC by Bedrock Geologic Class") 
  
plot(probable,pasture, xlab="% Probable Row Crops",ylab="% Pasture",axes=F) 
 pas_pretty(range(exp(pasture)-.001)) 
 axis(side=2,at=log(pas+.001), lab=pas, srt=90,cex=0.6) 
 pro_pretty(range(probable)) 
 axis(side=1,at=pro, lab=pro, srt=0,cex=0.6) 
 title("Figure 10: Relationship Between Probable Row Crops 
and Transformed Pasture Percentages",cex=1) 
  
plot(mixed, decid, xlab="% Mixed Forest",ylab="% Deciduous Forest",axes=F) 
 dec_pretty(range(decid)) 
 axis(side=2,at=dec, lab=dec, srt=90,cex=0.6) 
 mix_pretty(range(exp(mixed)-.001)) 
 axis(side=1,at=log(mix+.001), lab=mix, srt=0,cex=0.6) 
 title("Figure 11: Relationship Between Deciduous Forest  
and Transformed Mixed Forest Percentages",cex=1) 
  
plot(mixed[-c(35,202)], evergreen[-c(35,202)],xlab="% Mixed Forest",ylab="% 

Evergreen Forest",axes=F, 
 xlim=range(mixed),ylim=range(evergreen)) 
 points(mixed[35],evergreen[35],pch=35) 
 ever_pretty(range(exp(evergreen)-.001)) 
 axis(side=2,at=log(ever+.001), lab=ever, srt=90,cex=0.6) 
 mix_pretty(range(exp(mixed)-.001)) 
 axis(side=1,at=log(mix+.001), lab=mix, srt=0,cex=0.6) 
 title("Figure 12: Relationship Between Transformed Mixed Forest 
and Transformed Evergreen Forest Percentages",cex=1) 
  
plot(woody, emergent,xlab="% Woody Wetlands",ylab="% Emergent Wetlands",axes=F) 
 wood_pretty(range(exp(woody)-.001)) 
 axis(side=1,at=log(wood+.001), lab=wood, srt=0,cex=0.6) 
 emerge_pretty(range(exp(emergent)-.001)) 
 axis(side=2,at=log(emerge+.001), lab=emerge, srt=90,cex=0.6) 
 title("Figure 13: Relationship Between Transformed Wetland 

Percentages",cex=1) 
 
plot(urb.hi, urb.low,xlab="% Urban-High Density",ylab="% Urban-Low 

Density",axes=F) 
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 high_pretty(range(exp(urb.hi)-.001)) 
 axis(side=1,at=log(high+.001), lab=high, srt=0,cex=0.6) 
 low_pretty(range(exp(urb.low)-.001)) 
 axis(side=2,at=log(low+.001), lab=low, srt=90,cex=0.6) 
 title("Figure 9: Relationship Between Transformed Urban Percentages", cex=1) 
 
 
hist(july4$ANC,nclass=30,ylim=c(0,80),xlab="ANC",ylab="# of observations") 
title("Figure 5: Distribution of ANC from DARM") 
 
plot(july4$evergreen,july4$decid,xlab="% Evergreen Forest",ylab="%Deciduous 

Forest") 
title("Figure 7: Relationship Between Evergreen Forest  
and Deciduous Forest", cex=1) 
tree.lm_lm(july4$decid~july4$evergreen) 
plot(july4$probable,july4$row.crops, xlab="% Probable Row Crops",ylab="% Row 

Crops") 
title("Figure 8: Relationship Between Probable Row Crops  
and Row Crops",cex=1) 
crop.lm_lm(july4$row.crops~july4$probable) 
 
library(maps) 
map(region=c('West Virginia','Virginia','Maryland'),xlim=c(-84,-

77),ylim=c(36,40.25)) 
points(july5$LON.DD1,july5$LAT.DD,col=8,pch=16) 
points(july5neg$LON.DD1,july5neg$LAT.DD,col=6,pch=17) 
title("ANC Sites Designated by Magnitude 
(Circle = Positive, Triangle = Negative)") 
 
 
map(region=c('Pennsylvania','West Virginia','Virginia','Maryland','New 

York','Delaware')) 
points(site.geo.elev1$LON.DD1,site.geo.elev1$LAT.DD,col=6,pch=16) 
title("Figure 1: MAHA Region of the United States- 
EMAP Sampled Sites",cex=1.1) 
title("ANC Sites Identified by Bedrock Geologic Class",cex=1.1) 

 
Anisotropic Model Fitting Using 

Spherical and Exponential Covariance Functions 
 

date() 
h_seq(0,2.6,by = .01) 
par(mfrow=c(3,5)) 
mse_matrix(0,30,1) 
msespher_matrix(0,30,1) 
source("g:/st523/st523.q") #This is the spatial library of Dr. Reich and Dr. 

Davis 
 
var1_variogrm(X,Y,resid,30,dmax=max(h),theta=40,dtheta=10) 
title("theta=40,dtheta=10") 
abline(var(resid),0) 
fit1_fitvar1(var1,.05,.22,0.8,model="exp") 
lines(expvar(h,fit1)) 
expfit1_expvar(var1$x,fit1) 
mse[1]_sum((expfit1$y-var1$y)^2) 
fit1s_fitvar1(var1,.05,.22,2,model="sph") 
lines(sphervar(h,fit1s),lty=2) 
spherfit1_sphervar(var1$x,fit1s) 
msespher[1]_sum((spherfit1$y-var1$y)^2) 
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var2_variogrm(X,Y,resid,30,dmax=max(h),theta=45,dtheta=10) 
title("theta=45,dtheta=10") 
abline(var(resid),0) 
fit2_fitvar1(var2,.05,.22,0.8,model="exp") 
lines(expvar(h,fit2)) 
expfit2_expvar(var2$x,fit2) 
mse[2]_sum((expfit2$y-var2$y)^2) 
fit2s_fitvar1(var2,.05,.22,2,model="sph") 
lines(sphervar(h,fit2s),lty=2) 
spherfit2_sphervar(var2$x,fit2s) 
msespher[2]_sum((spherfit2$y-var2$y)^2) 
 
var3_variogrm(X,Y,resid,30,dmax=max(h),theta=50,dtheta=10) 
title("theta=50,dtheta=10") 
abline(var(resid),0) 
fit3_fitvar1(var3,.05,.22,0.8,model="exp") 
lines(expvar(h,fit3)) 
expfit3_expvar(var3$x,fit3) 
mse[3]_sum((expfit3$y-var3$y)^2) 
fit3s_fitvar1(var3,.05,.22,2,model="sph") 
lines(sphervar(h,fit3s),lty=2) 
spherfit3_sphervar(var3$x,fit3s) 
msespher[3]_sum((spherfit3$y-var3$y)^2) 
 
var4_variogrm(X,Y,resid,30,dmax=max(h),theta=55,dtheta=10) 
title("theta=55,dtheta=10") 
abline(var(resid),0) 
fit4_fitvar1(var4,.05,.22,0.8,model="exp") 
lines(expvar(h,fit4)) 
expfit4_expvar(var4$x,fit4) 
mse[4]_sum((expfit4$y-var4$y)^2) 
fit4s_fitvar1(var4,.05,.22,2,model="sph") 
lines(sphervar(h,fit4s),lty=2) 
spherfit4_sphervar(var4$x,fit4s) 
msespher[4]_sum((spherfit4$y-var4$y)^2) 
  
var5_variogrm(X,Y,resid,30,dmax=max(h),theta=60,dtheta=10) 
title("theta=60,dtheta=10") 
abline(var(resid),0) 
fit5_fitvar1(var5,.05,.22,0.8,model="exp") 
lines(expvar(h,fit5)) 
expfit5_expvar(var5$x,fit5) 
mse[5]_sum((expfit5$y-var5$y)^2) 
fit5s_fitvar1(var5,.05,.22,2,model="sph") 
lines(sphervar(h,fit5s),lty=2) 
spherfit5_sphervar(var5$x,fit5s) 
msespher[5]_sum((spherfit5$y-var5$y)^2) 
 
var6_variogrm(X,Y,resid,30,dmax=max(h),theta=40,dtheta=15) 
title("theta=40,dtheta=15") 
abline(var(resid),0) 
fit6_fitvar1(var6,.05,.22,0.8,model="exp") 
lines(expvar(h,fit6)) 
expfit6_expvar(var6$x,fit6) 
mse[6]_sum((expfit6$y-var6$y)^2) 
fit6s_fitvar1(var6,.05,.22,2,model="sph") 
lines(sphervar(h,fit6s),lty=2) 
spherfit6_sphervar(var6$x,fit6s) 
msespher[6]_sum((spherfit6$y-var6$y)^2) 
 
var7_variogrm(X,Y,resid,30,dmax=max(h),theta=45,dtheta=15) 
title("theta=45,dtheta=15") 
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abline(var(resid),0) 
fit7_fitvar1(var7,.05,.22,0.8,model="exp") 
lines(expvar(h,fit7)) 
expfit7_expvar(var7$x,fit7) 
mse[7]_sum((expfit7$y-var7$y)^2) 
fit7s_fitvar1(var7,.05,.22,2,model="sph") 
lines(sphervar(h,fit7),lty=2) 
spherfit7_sphervar(var7$x,fit7s) 
msespher[7]_sum((spherfit7$y-var7$y)^2) 
 
 
var8_variogrm(X,Y,resid,30,dmax=max(h),theta=50,dtheta=15) 
title("theta=50,dtheta=15") 
abline(var(resid),0) 
fit8_fitvar1(var8,.05,.22,0.8,model="exp") 
lines(expvar(h,fit8)) 
expfit8_expvar(var8$x,fit8) 
mse[8]_sum((expfit8$y-var8$y)^2) 
fit8s_fitvar1(var8,.05,.22,2,model="sph") 
lines(sphervar(h,fit8s),lty=2) 
spherfit8_sphervar(var8$x,fit8s) 
msespher[8]_sum((spherfit8$y-var8$y)^2) 
 
var9_variogrm(X,Y,resid,30,dmax=max(h),theta=55,dtheta=15) 
title("theta=55,dtheta=15") 
abline(var(resid),0) 
fit9_fitvar1(var9,.05,.22,0.8,model="exp") 
lines(expvar(h,fit9)) 
expfit9_expvar(var9$x,fit9) 
mse[9]_sum((expfit9$y-var9$y)^2) 
fit9s_fitvar1(var9,.05,.22,2,model="sph") 
lines(sphervar(h,fit9s),lty=2) 
spherfit9_sphervar(var9$x,fit9s) 
msespher[9]_sum((spherfit9$y-var9$y)^2) 
 
var10_variogrm(X,Y,resid,30,dmax=max(h),theta=60,dtheta=15) 
title("theta=60,dtheta=15") 
abline(var(resid),0) 
fit10_fitvar1(var10,.05,.22,0.8,model="exp") 
lines(expvar(h,fit10)) 
expfit10_expvar(var10$x,fit10) 
mse[10]_sum((expfit10$y-var10$y)^2) 
fit10s_fitvar1(var10,.05,.22,2,model="sph") 
lines(sphervar(h,fit10s),lty=2) 
spherfit10_sphervar(var10$x,fit10s) 
msespher[10]_sum((spherfit10$y-var10$y)^2) 
 
var11_variogrm(X,Y,resid,30,dmax=max(h),theta=40,dtheta=20) 
title("theta=40,dtheta=20") 
abline(var(resid),0) 
fit11_fitvar1(var11,.05,.22,0.8,model="exp") 
lines(expvar(h,fit11)) 
expfit11_expvar(var11$x,fit11) 
mse[11]_sum((expfit11$y-var11$y)^2) 
fit11s_fitvar1(var11,.05,.22,2,model="sph") 
lines(sphervar(h,fit11s),lty=2) 
spherfit11_sphervar(var11$x,fit11s) 
msespher[11]_sum((spherfit11$y-var11$y)^2) 
 
var12_variogrm(X,Y,resid,30,dmax=max(h),theta=45,dtheta=20) 
title("theta=45,dtheta=20") 
abline(var(resid),0) 
fit12_fitvar1(var12,.05,.22,0.8,model="exp") 
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lines(expvar(h,fit12)) 
expfit12_expvar(var12$x,fit12) 
mse[12]_sum((expfit12$y-var12$y)^2) 
fit12s_fitvar1(var12,.05,.22,2,model="sph") 
lines(sphervar(h,fit12s),lty=2) 
spherfit12_sphervar(var12$x,fit12s) 
msespher[12]_sum((spherfit12$y-var12$y)^2) 
 
 
var13_variogrm(X,Y,resid,30,dmax=max(h),theta=50,dtheta=20) 
title("theta=50,dtheta=20") 
abline(var(resid),0) 
fit13_fitvar1(var13,.05,.22,0.8,model="exp") 
lines(expvar(h,fit13)) 
expfit13_expvar(var13$x,fit13) 
mse[13]_sum((expfit13$y-var13$y)^2) 
fit13s_fitvar1(var13,.05,.22,2,model="sph") 
lines(sphervar(h,fit13s),lty=2) 
spherfit13_sphervar(var13$x,fit13s) 
msespher[13]_sum((spherfit13$y-var13$y)^2) 
 
var14_variogrm(X,Y,resid,30,dmax=max(h),theta=55,dtheta=20) 
title("theta=55,dtheta=20") 
abline(var(resid),0) 
fit14_fitvar1(var14,.05,.22,0.8,model="exp") 
lines(expvar(h,fit14)) 
expfit14_expvar(var14$x,fit14) 
mse[14]_sum((expfit14$y-var14$y)^2) 
fit14s_fitvar1(var14,.05,.22,2,model="sph") 
lines(sphervar(h,fit14s),lty=2) 
spherfit14_sphervar(var14$x,fit14s) 
msespher[14]_sum((spherfit14$y-var14$y)^2) 
 
 
var15_variogrm(X,Y,resid,30,dmax=max(h),theta=60,dtheta=20) 
title("theta=60,dtheta=20") 
abline(var(resid),0) 
fit15_fitvar1(var15,.05,.22,0.8,model="exp") 
lines(expvar(h,fit15)) 
expfit15_expvar(var15$x,fit15) 
mse[15]_sum((expfit15$y-var15$y)^2) 
fit15s_fitvar1(var15,.05,.22,2,model="sph") 
lines(sphervar(h,fit15s),lty=2) 
spherfit15_sphervar(var15$x,fit15s) 
msespher[15]_sum((spherfit15$y-var15$y)^2) 
 
stamp() 
 
var16_variogrm(X,Y,resid,30,dmax=max(h),theta=40,dtheta=25) 
title("theta=40,dtheta=25") 
abline(var(resid),0) 
fit16_fitvar1(var16,.05,.22,0.8,model="exp") 
lines(expvar(h,fit16)) 
expfit16_expvar(var16$x,fit16) 
mse[16]_sum((expfit16$y-var16$y)^2) 
fit16s_fitvar1(var16,.05,.22,2,model="sph") 
lines(sphervar(h,fit16s),lty=2) 
spherfit16_sphervar(var16$x,fit16s) 
msespher[16]_sum((spherfit16$y-var16$y)^2) 
 
var17_variogrm(X,Y,resid,30,dmax=max(h),theta=45,dtheta=25) 
title("theta=45,dtheta=25") 
abline(var(resid),0) 
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fit17_fitvar1(var17,.05,.22,0.8,model="exp") 
lines(expvar(h,fit17)) 
expfit17_expvar(var17$x,fit17) 
mse[17]_sum((expfit17$y-var17$y)^2) 
fit17s_fitvar1(var17,.05,.22,2,model="sph") 
lines(sphervar(h,fit17s),lty=2) 
spherfit17_sphervar(var17$x,fit17s) 
msespher[17]_sum((spherfit17$y-var17$y)^2) 
 
var18_variogrm(X,Y,resid,30,dmax=max(h),theta=50,dtheta=25) 
title("theta=50,dtheta=25") 
abline(var(resid),0) 
fit18_fitvar1(var18,.05,.22,0.8,model="exp") 
lines(expvar(h,fit18)) 
expfit18_expvar(var18$x,fit18) 
mse[18]_sum((expfit18$y-var18$y)^2) 
fit18s_fitvar1(var18,.05,.22,2,model="sph") 
lines(sphervar(h,fit18s),lty=2) 
spherfit18_sphervar(var18$x,fit18s) 
msespher[18]_sum((spherfit18$y-var18$y)^2) 
 
var19_variogrm(X,Y,resid,30,dmax=max(h),theta=55,dtheta=25) 
title("theta=55,dtheta=25") 
abline(var(resid),0) 
fit19_fitvar1(var19,.05,.22,0.8,model="exp") 
lines(expvar(h,fit19)) 
expfit19_expvar(var19$x,fit19) 
mse[19]_sum((expfit19$y-var19$y)^2) 
fit19s_fitvar1(var19,.05,.22,2,model="sph") 
lines(sphervar(h,fit19s),lty=2) 
spherfit19_sphervar(var19$x,fit19s) 
msespher[19]_sum((spherfit19$y-var19$y)^2) 
 
var20_variogrm(X,Y,resid,30,dmax=max(h),theta=60,dtheta=25) 
title("theta=60,dtheta=25") 
abline(var(resid),0) 
fit20_fitvar1(var20,.05,.22,0.8,model="exp") 
lines(expvar(h,fit20)) 
expfit20_expvar(var20$x,fit20) 
mse[20]_sum((expfit20$y-var20$y)^2) 
fit20s_fitvar1(var20,.05,.22,2,model="sph") 
lines(sphervar(h,fit20s),lty=2) 
spherfit20_sphervar(var20$x,fit20s) 
msespher[20]_sum((spherfit20$y-var20$y)^2) 
 
var21_variogrm(X,Y,resid,30,dmax=max(h),theta=40,dtheta=30) 
title("theta=40,dtheta=30") 
abline(var(resid),0) 
fit21_fitvar1(var21,.05,.22,0.8,model="exp") 
lines(expvar(h,fit21)) 
expfit21_expvar(var21$x,fit21) 
mse[21]_sum((expfit21$y-var21$y)^2) 
fit21s_fitvar1(var21,.05,.22,2,model="sph") 
lines(sphervar(h,fit21s),lty=2) 
spherfit21_sphervar(var21$x,fit21s) 
msespher[21]_sum((spherfit21$y-var21$y)^2) 
 
var22_variogrm(X,Y,resid,30,dmax=max(h),theta=45,dtheta=30) 
title("theta=45,dtheta=30") 
abline(var(resid),0) 
fit22_fitvar1(var22,.05,.22,0.8,model="exp") 
lines(expvar(h,fit22)) 
expfit22_expvar(var22$x,fit22) 
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mse[22]_sum((expfit22$y-var22$y)^2) 
fit22s_fitvar1(var22,.05,.22,2,model="sph") 
lines(sphervar(h,fit22s),lty=2) 
spherfit22_sphervar(var22$x,fit22s) 
msespher[22]_sum((spherfit22$y-var22$y)^2) 
 
var23_variogrm(X,Y,resid,30,dmax=max(h),theta=50,dtheta=30) 
title("theta=50,dtheta=30") 
abline(var(resid),0) 
fit23_fitvar1(var23,.05,.22,0.8,model="exp") 
lines(expvar(h,fit23)) 
expfit23_expvar(var23$x,fit23) 
mse[23]_sum((expfit23$y-var23$y)^2) 
fit23s_fitvar1(var23,.05,.22,2,model="sph") 
lines(sphervar(h,fit23s),lty=2) 
spherfit23_sphervar(var23$x,fit23s) 
msespher[23]_sum((spherfit23$y-var23$y)^2) 
 
var24_variogrm(X,Y,resid,30,dmax=max(h),theta=55,dtheta=30) 
title("theta=55,dtheta=30") 
abline(var(resid),0) 
fit24_fitvar1(var24,.05,.22,0.8,model="exp") 
lines(expvar(h,fit24)) 
expfit24_expvar(var24$x,fit24) 
mse[24]_sum((expfit24$y-var24$y)^2) 
fit24s_fitvar1(var24,.05,.22,2,model="sph") 
lines(sphervar(h,fit24s),lty=2) 
spherfit24_sphervar(var24$x,fit24s) 
msespher[24]_sum((spherfit24$y-var24$y)^2) 
 
var25_variogrm(X,Y,resid,30,dmax=max(h),theta=60,dtheta=30) 
title("theta=60,dtheta=30") 
abline(var(resid),0) 
fit25_fitvar1(var25,.05,.22,0.8,model="exp") 
lines(expvar(h,fit25)) 
expfit25_expvar(var25$x,fit25) 
mse[25]_sum((expfit25$y-var25$y)^2) 
fit25s_fitvar1(var25,.05,.22,2,model="sph") 
lines(sphervar(h,fit25s),lty=2) 
spherfit25_sphervar(var25$x,fit25s) 
msespher[25]_sum((spherfit25$y-var25$y)^2) 
 
var26_variogrm(X,Y,resid,30,dmax=max(h),theta=40,dtheta=35) 
title("theta=40,dtheta=35") 
abline(var(resid),0) 
fit26_fitvar1(var26,.05,.22,0.8,model="exp") 
lines(expvar(h,fit26)) 
expfit26_expvar(var26$x,fit26) 
mse[26]_sum((expfit26$y-var26$y)^2) 
fit26s_fitvar1(var26,.05,.22,2,model="sph") 
lines(sphervar(h,fit26s),lty=2) 
spherfit26_sphervar(var26$x,fit26s) 
msespher[26]_sum((spherfit26$y-var26$y)^2) 
 
var27_variogrm(X,Y,resid,30,dmax=max(h),theta=45,dtheta=35) 
title("theta=45,dtheta=35") 
abline(var(resid),0) 
fit27_fitvar1(var27,.05,.22,0.8,model="exp") 
lines(expvar(h,fit27)) 
expfit27_expvar(var27$x,fit27) 
mse[27]_sum((expfit27$y-var27$y)^2) 
fit27s_fitvar1(var27,.05,.22,2,model="sph") 
lines(sphervar(h,fit27s),lty=2) 
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spherfit27_sphervar(var27$x,fit27s) 
msespher[27]_sum((spherfit27$y-var27$y)^2) 
 
var28_variogrm(X,Y,resid,30,dmax=max(h),theta=50,dtheta=35) 
title("theta=50,dtheta=35") 
abline(var(resid),0) 
fit28_fitvar1(var28,.05,.22,0.8,model="exp") 
lines(expvar(h,fit28)) 
expfit28_expvar(var28$x,fit28) 
mse[28]_sum((expfit28$y-var28$y)^2) 
fit28s_fitvar1(var28,.05,.22,2,model="sph") 
lines(sphervar(h,fit28s),lty=2) 
spherfit28_sphervar(var28$x,fit28s) 
msespher[28]_sum((spherfit28$y-var28$y)^2) 
 
 
var29_variogrm(X,Y,resid,30,dmax=max(h),theta=55,dtheta=35) 
title("theta=55,dtheta=35") 
abline(var(resid),0) 
fit29_fitvar1(var29,.05,.22,0.8,model="exp") 
lines(expvar(h,fit29)) 
expfit29_expvar(var29$x,fit29) 
mse[29]_sum((expfit29$y-var29$y)^2) 
fit29s_fitvar1(var29,.05,.22,2,model="sph") 
lines(sphervar(h,fit29s),lty=2) 
spherfit29_sphervar(var29$x,fit29s) 
msespher[29]_sum((spherfit29$y-var29$y)^2) 
 
var30_variogrm(X,Y,resid,30,dmax=max(h),theta=60,dtheta=35) 
title("theta=60,dtheta=35") 
abline(var(resid),0) 
fit30_fitvar1(var30,.05,.22,0.8,model="exp") 
lines(expvar(h,fit30)) 
expfit30_expvar(var30$x,fit30) 
mse[30]_sum((expfit30$y-var30$y)^2) 
fit30s_fitvar1(var30,.05,.22,2,model="sph") 
lines(sphervar(h,fit30s),lty=2) 
spherfit30_sphervar(var30$x,fit30s) 
msespher[30]_sum((spherfit30$y-var30$y)^2) 
stamp() 
 
date() 
 
 
fitrange_matrix(0,30,1) 
fitrange[1]_fit1$range 
fitrange[2]_fit2$range 
fitrange[3]_fit3$range 
fitrange[4]_fit4$range 
fitrange[5]_fit5$range 
fitrange[6]_fit6$range 
fitrange[7]_fit7$range 
fitrange[8]_fit8$range 
fitrange[9]_fit9$range 
fitrange[10]_fit10$range 
fitrange[11]_fit11$range 
fitrange[12]_fit12$range 
fitrange[13]_fit13$range 
fitrange[14]_fit14$range 
fitrange[15]_fit15$range 
fitrange[16]_fit16$range 
fitrange[17]_fit17$range 
fitrange[18]_fit18$range 
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fitrange[19]_fit19$range 
fitrange[20]_fit20$range 
fitrange[21]_fit21$range 
fitrange[22]_fit22$range 
fitrange[23]_fit23$range 
fitrange[24]_fit24$range 
fitrange[25]_fit25$range 
fitrange[26]_fit26$range 
fitrange[27]_fit27$range 
fitrange[28]_fit28$range 
fitrange[29]_fit29$range 
fitrange[30]_fit30$range 
 
fitrange1_matrix(0,30,1) 
fitrange1[1]_fit1s$range 
fitrange1[2]_fit2s$range 
fitrange1[3]_fit3s$range 
fitrange1[4]_fit4s$range 
fitrange1[5]_fit5s$range 
fitrange1[6]_fit6s$range 
fitrange1[7]_fit7s$range 
fitrange1[8]_fit8s$range 
fitrange1[9]_fit9s$range 
fitrange1[10]_fit10s$range 
fitrange1[11]_fit11s$range 
fitrange1[12]_fit12s$range 
fitrange1[13]_fit13s$range 
fitrange1[14]_fit14s$range 
fitrange1[15]_fit15s$range 
fitrange1[16]_fit16s$range 
fitrange1[17]_fit17s$range 
fitrange1[18]_fit18s$range 
fitrange1[19]_fit19s$range 
fitrange1[20]_fit20s$range 
fitrange1[21]_fit21s$range 
fitrange1[22]_fit22s$range 
fitrange1[23]_fit23s$range 
fitrange1[24]_fit24s$range 
fitrange1[25]_fit25s$range 
fitrange1[26]_fit26s$range 
fitrange1[27]_fit27s$range 
fitrange1[28]_fit28s$range 
fitrange1[29]_fit29s$range 
fitrange1[30]_fit30s$range 
 
exponent_cbind(mse,fitrange) 
sphere_cbind(msespher,fitrange1) 
fitting_cbind(exponent,sphere) 
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