ODFW Coho Salmon Trend Analysis Development

Don L. Stevens, Jr.
Cynthia Cooper
Department of Statistics
Oregon State University
This presentation was partially supported under STAR Research Assistance Agreement No. CR-829096 awarded by the U.S. Environmental Protection Agency to Oregon State University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and EPA does not endorse any products or commercial services mentioned in this publication.
ODFW Coho Analysis Development

Goal

• Detect trends in Oregon Coastal and Southern Oregon-Northern California Coho per-mile densities
 – 27-year study (beginning 1998) of spatially-balanced probability sample of stream reaches
ODFW Coho Analysis Development

Outline

• Sampling design

• Estimating distribution of trends

• Simulation of 27-year data set
ODFW Coho Analysis Development

Assumptions/characteristics

- Spatial pattern of Coho densities

- Trends calculated from observations every 3rd year and every 9th year would be correlated with those calculated from annual data

- Coho 2-4 year life-cycle may induce density fluctuations

- Limiting capacities
ODFW Coho Analysis Development

Sampling Design

• Assumes spatial pattern

• Spatially-balanced design produces estimates with smaller variance than simple random samples (SRS)

• Rotating panel design
 – Balance between extensive population coverage (for status) and repeat visits to same site (for trend)
ODFW Coho Analysis Development

Sampling Design

- **Spatially-balanced panels:**
 - One panel of sites visited every year
 - Three panels of sites visited every 3 years
 - Nine panels of sites visited every 9 years
 - Twenty-seven panels of sites visited every 27 years

- **Four panels visited each year:**
 - the annual panel, a 3-year panel, a 9-year panel, and a 27-year panel

- **Multi-stage**
 - $S_4 \subset S_3 \subset S_2 \subset S_1$
ODFW Coho Analysis Development

Site-specific trend response (τ)

- Candidate measures of site-specific trend
 - Least-squares slope of per-mile density over 27-years
 - Other slope descriptors

Phase-4 (S_4) trends (τ_4)
- Sites visited annually

Phase-3 (S_3) trends (τ_3)
- 3-year panel sites and annual sites at 3-year intervals

Phase-2 (S_2) trends (τ_2)
- 9-year panel sites, 3-year panel sites at every 3rd observation and annual sites at 9-year intervals
Regional Trend Description

- Goal – Characterize site-specific trend descriptor
- Characterize regional trend by distribution of site-specific trend descriptors
 - For example, cumulative distribution function (cdf) of least-squares slope given annual observations of coho density
 - Easy to get summary statistics from the cdf: mean, median, quantiles, percentages
ODFW Coho Analysis Development

Distribution (cdf) of trends

- Proportion of site trends below z, where z is in the interval spanning the range of (estimated) trends
- Response for cdf of trends

 \[y = I[\tau < z] = \{1 \text{ if } \tau < z; \text{ otherwise } 0\} \]
- Difference estimator reduces variance of cdf estimator

 - Assume good correlation between 3-year/9-year trend measures and annually-visited trend measures

 - Extended for multi-stage sampling
Estimator for Trend cdf

\[
\hat{F}_\tau(b) = \frac{1}{|R|} \left\{ \sum_{s_i \in S_2} \frac{I(\tau_2 \mid s_i, b)}{13\pi_0} \right. \\
+ \sum_{s_j \in S_3} \frac{I(\tau_3 \mid s_j, b) - I(\tau_2 \mid s_j, b)}{4\pi_0} \\
+ \sum_{s_k \in S_4} \frac{I(\tau_4 \mid s_k, b) - I(\tau_3 \mid s_k, b)}{\pi_0} \right\}
\]

Estimates cdf of \(\tau_2 \)
Corrects for difference between (cdf of) \(\tau_3 \) and \(\tau_2 \)
Corrects for difference between (cdf of) \(\tau_4 \) and \(\tau_3 \)
ODFW Coho Analysis Development
Preliminary results 1998-2001

Trend Slope
Cumulative Distribution

Stage 4 Estimate
Composite Estimate

\(\hat{V}(\hat{F}(\tau_4)) \)
\(\hat{V}(\hat{F}_4(\tau_4)) \)
ODFW Coho Analysis Development

Further testing

- **Goal**
 - Determine if Trend-cdf estimators detect trends

- **Simulate 27-year data sets**
 - Base on 1998-2001 densities & trend characteristics

- **Use to exercise trend analysis algorithm**
 - Exercise 3-stage sample
 - Quantify increased power
ODFW Coho Analysis Development

Simulation objectives

• Mimic the patterns of Coho per-mile density over time
 – Produce a 27-year multi-stage sampling design data set

• Underlying biological/ ecological/ environmental & anthropogenic mechanisms are not modeled

• Not intended to predict future of Coho
ODFW Coho Analysis Development
1998-2001 Stage-4 patterns
One possible reference scenario

(Data from ODFW)
ODFW Coho Analysis Development

Simulation

• Based on 1998-2001 ODFW Coho density data

• Set up a Coho per-mile density surface based on 2001 observations
 – Krige densities for all sites to be sampled over 27-year period from sites visited in 2001

• Set up empirical distribution of multiplicative effects \((M_{emp}) \)
ODFW Coho Analysis Development

Empirical multiplicative effects

25% are decreases
50% are increases
ODFW Coho Analysis Development Simulation

- For each year (after 2001) and for each site
 - Randomly draw (from M_{emp})
 - Apply to site’s current density
 - Exponentially attenuate effect for densities exceeding a threshold
 - Induces population crashes
- For sites with zero density
 - Randomly select (’98-’01-empirically-based) proportion of sites to get “introductions”
 - Randomly select (’98-’01-empirically-based) magnitude of density of introduction
ODFW Coho Analysis Development

Sample of realized profiles
ODFW Coho Analysis Development

References

- The Oregon Plan for Salmon and Watersheds March 1997 (OPSW-ODFW-2002-07)

This presentation was developed under STAR Research Assistance Agreement No. CR82-9096-01 awarded by the U.S. Environmental Protection Agency to Oregon State University. It has not been formally reviewed by EPA. The views expressed in this presentation are solely those of the authors and EPA does not endorse any products or commercial services mentioned in this publication.