Composition Models for Benthic Invertebrate Data

Devin Johnson, Jennifer Hoeting, LeRoy Poff, and Brian Bledsoe

Colorado State University

Research supported by
- Environmental Protection Agency grants R-82909501 and R-82863601
- National Science Foundation grant DEB-0091961.
Species Composition Models

- Direct observation of species, or functional group, abundance has long been a key indicator of ecological health.

- Two items are critical for development of biological monitoring programs:
 - Understanding of how environmental variables, at different scales, affect abundance and composition of species or functional groups.
 - Which species or functional/life history traits are most beneficial to examine.
Single Trait State-Space Model

Once collected at a stream site, observed species are categorized into different levels of a single trait (e.g. drift propensity, feeding type, or body shape).

In addition, a suite of environmental covariates, at both local and watershed scales, are also observed.

notation:

i Site index ($i = 1, \ldots, S$)

j Trait level index ($j = 1, \ldots, J$)

k Local scale environmental variable index ($k = 1, \ldots, L$)

l Watershed scale environmental variable index ($l = 1, \ldots, W$)
Single Trait State-Space Model

Response:

\[Y_{ij} | \lambda_{ij} \sim \text{indep. Poisson}(\lambda_{ij}) \]

\[\log \lambda_{ij} = \theta_{ij} + X'_i \beta_j \]

where,

- \(Y_{ij} \) is the number of organisms with trait level \(j \) at site \(i \)
- \(X_i \) is an \(L + W \) vector of combined scale covariates
- \(\theta_i = (\theta_{i1}, \ldots, \theta_{iJ}) \sim \text{MVN}(\mu_\theta, T_{\theta}^{-1}) \) for \(i = 1, \ldots, S \)
 (Space-time correlation could be modeled)
- Rate composition: \(\lambda_{ij} / \sum_{j=1}^J \lambda_{ij} \sim \text{logistic normal} \)
Single Trait State-Space Model

Covariates: Let $X_i = (X_i^{(L)}, X_i^{(W)})$, where $X_i^{(L)}$ is an L vector of local environmental covariates and $X_i^{(W)}$ is a W vector of watershed covariates. Then, we consider the covariate model:

$$X_i \sim MVN \left(\mu_X, T_X^{-1} \right)$$

or, equivalently,

$$X_i^{(L)} | X_i^{(W)} \sim MVN \left(\gamma_0 + \gamma' X_i^{(W)}, T_{L|W}^{-1} \right)$$

and

$$X_i^{(W)} \sim MVN \left(\mu_W, T_W^{-1} \right),$$

where,

$$
\gamma = \text{Var} \left(X_i^{(W)} \right)^{-1} \text{Cov} \left(X_i^{(L)}, X_i^{(W)} \right)
$$
Number of Reproductive Generations per Year

- Data collected as part of 1994 and 1995 Colorado and Oregon Regional EMAP studies

- **Response:**

 Each species is classified according to one of three categories

 1. Semi-volutine (< 1 reproductive generation per year)
 2. Univolitine (1 reproductive generation per year)
 3. Multi-volutine (more than 1 reproductive generation per year)
Number of Reproductive Generations per Year

• Local covariates:
 – % WOOD: % of substrate composed of wood
 – GRAD: Gradation coefficient
 – POWER: Surrogate for stream power
 – RBS: Relative bed stability

• Watershed covariates:
 – PRECIP: Average number of inches over the basin
 – % BAR: % barren land in basin
 – % AG: % agricultural pasture in basin

• Using vague prior information, parameters are estimated using a Gibbs MCMC sample
Number of Reproductive Generations per Year
Graphical Model

Edge inclusion determined by credible intervals for the elements of β, γ, T_W, and $T_{L|W}$
Continuing Research

We are currently investigating the following research topics:

• Bayesian estimation and model determination
 – Stochastic search over possible graphical models (edge addition/deletion)
 – Efficient parameterizations and algorithms for MCMC estimation

• Additional parameterizations/models
 – Addition of spatial correlation structure
 – Multiple compositions
 – Modeling discrete and continuous covariates (Conditional Gaussian distribution)