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Abstract

A nonparametric model-assisted survey estimator for status estimation based on

local polynomial regression is extended to incorporate spatial auxiliary information.

Under mild assumptions, this estimator is design-unbiased and consistent. Simulation

studies show that the nonparametric regression estimator is competitive with stan-

dard parametric techniques when a parametric specification is correct, and outper-

forms those techniques when the parametric specification is incorrect. The method-

ology is applied to water chemistry data from the EMAP Northeastern Lakes Survey.

1 Introduction

1.1 Motivation

Many surveys contain auxiliary information at the population level in addition to sample
data. This auxiliary information can come from satellite images, GPS data, aerial pho-
tographs, or other sources. In a common survey situation, a statistical agency, often a
federal, state, or tribal, collects data and auxiliary information. A data set is then created
and released to the users. This data set reflects knowledge of both the design and auxiliary
information. The end users are then responsible for estimating the status of many study
variables. The U.S. EPA’s EMAP (Environmental Monitoring and Assessment Program)
Northeastern Lakes survey is a good example of this. The EPA had some information
about all the lakes in the region of interest, such as longitude, latitude, and elevation. A
sample of lakes was then taken. Each of the sampled lakes was visited, and additional
measurements were taken. The final data set includes both this sample information and
the auxiliary information previously available.

In this situation, it is of interest to develop a model relating sample and auxiliary
information so that inferences can be made about non-sampled population values. However,
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in this modeling environment, time and other resources are often limited. The agency using
the data may need quick answers to questions about population status. Their statistical
resources may also be limited. Additionally, there may be controversy among the end users.
The preferred model should not be influenced by user biases. This ideal model should be
capable of handling many study variables without requiring modeling efforts for each. It
should also be efficient if the model is correct, but not fail if the model is wrong. In this
situation, that means the estimator should have small variance compared to other available
estimators when the model is specified correctly, but still give reasonable answers if this
specification is incorrect. That is, the estimator should be approximately unbiased and
consistent.

Breidt and Opsomer (2000) developed a local polynomial regression estimator for direct
element sampling with scalar auxiliary information available for every item in the popula-
tion. This estimator is asymptotically unbiased, and more efficient than regression models
when the model regression function is not correctly specified, while being competitive with
the regression estimator when the regression model is correct. In this paper, the method
developed by Breidt and Opsomer is extended to bivariate auxiliary information. This
extension has numerous practical applications, as many data sets include more than one
auxiliary variable. Frequently, for example, the spatial location of every population element
is known. For concreteness, here we consider the auxiliary vector to be spatial coordinates
of the first stage sampling unit, though any other auxiliary vector would be handled the
same way.

1.2 Overview of Paper

In this paper, we first define some of the notation used for two stages of sampling. Model-
assisted estimation is discuess and the nonparametric regression estimator is then presented.
The nonparametric regression technique is examined through a simulation study, and then
applied to data from the EMAP Northeastern Lakes study in the empirical example. The
paper concludes with a discussion of results and further topics of research.

2 Methods

2.1 Notation

Consider a finite population of elements U = {1, . . . , k, . . . , N}. At stage one, a probability
sample s is drawn from U according to a fixed size design pI(·), where pI(s) is the probability
of drawing the sample s from U . Let n be the size of s. The inclusion probabilities
πi = Pr {i ∈ s} =

∑

s:i∈s pI(s) and πij = Pr {i, j ∈ s} =
∑

s:i,j∈s pI(s) are assumed to be
strictly positive, where pI refers to first-stage design. The study variable zk is observed for
k ∈ s. The parameter of interest is the the population total tz =

∑

k∈U zk. Let Ii = 1 if i ∈ s
and Ii = 0 otherwise. Using this notation, an estimator t̂ of t is said to be design-unbiased
if Ep

[

t̂
]

= tz. For each population element, i, an auxiliary vector, xi, is available. Here,
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we consider xi to be the spatial location of i, xi = (xi, yi).

2.2 Model-Assisted Estimation

The response for the ith population unit, zi, is assumed to be a smooth function of x plus
random error, i.e.

zi = gt(xi) + εi

where gt(xi) is a smooth function of xi, εi are independent random variables with zero
mean and variance v(xi), a smooth, strictly positive function of xi.

Model-assisted estimators are formed from a model-based prediction, plus a design bias
adjustment:

t̂ =

{

∑

i∈U

µ̂i +
∑

i∈s

zi − µ̂i

πi

}

where µ̂i is the model fit for the ith population unit.
These estimators are approximately design-unbiased, with small variance if the model

is correct. For the popular Horvitz-Thompson estimator, µ̂i ≡ 0 since no auxiliary infor-
mation is used. In generalized regression, µ̂i = x′

iβ̂, while µ̂i comes from a kernel smooth
in local polynomial regression estimation.

2.3 Two-Stage Estimator for Spatial Sampling

Using local polynomial regression, the form of the estimator for the two dimensional case
is the basic model assisted estimator, where the model based prediction of µ̂i is

µ̂i = e
′

1
(X ′

siW siXsi)
−1

X
′

siW sizs = w
′

sizs

Here, e1 is a vector with a 1 in the first position and 0 for the rest of the entries; zs is the
vector of sampled responses. The local design matrix, Xsi, is defined as

Xsi =
[

1 xj − xi · · · (xj − xi)
p yj − yi · · · (yj − yi)

q
]

j∈s
,

where p and q are the degrees of the local polynomials being fitted in the x and y directions,
respectively. The local weighting matrix is

W si = Diag

{

1

πjhxhy

K

(

xj − xi

hx

,
yj − yi

hy

)}

j∈s

.

Here, K is a two-dimensional kernel function. The bandwidth in the x direction is hx, while
hy is the bandwidth in the y direction. This form assumes a diagonal bandwidth matrix,
H . If H is not diagonal, then the expression above becomes

W si = Diag

{

1

πj|H|
K
(

H
−1

xij

)

}

j∈s

,
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where

xij =

[

xj − xi

yj − yi

]

.

The estimator of t̂ can now be expressed as

t̂ =
∑

i∈U

µ̂i +
∑

i∈s

zi − µ̂i

πi

.

2.3.1 Weights

The nonparametric regression estimator can be expressed as a linear combination of the
study variables, with weights which do not depend on the study variables. These weights
are extremely useful in practice. From earlier, note that

t̂ =
∑

i∈s







1

πi

+
∑

j∈U

(

1 −
Ij

πj

)

w
′

sjei







zi

=
∑

i∈s

ωiszi

Thus, t̂ is a linear combination of the zi’s in s, with weights {ωis} that reflect both the
design and the auxiliary information. Because these weights are independent of the study
variables, they can be applied to any study variable of interest.

3 Simulation

We performed simulations to examine the performance of the local polynomial regression
estimator, and to compare it to that of other estimators. The estimators used are the
Horvitz-Thompson (HT), linear regression (REG) as in Särndal, Swensson, and Wretman
(1992), and local polynomial regression, with p = q = 0 (LPR0) and p = q = 1 (LPR).

In this simulation, we sample from a continuous, spatially correlated surface, or from a
noisy version of this surface. The surface is considered fixed, as we are looking at properties
of estimators under repeated sampling of a population. Note that it is not possible to
compute and store a continuous surface in a simulation study without first parameterizing
it. In order to create the continuous surface, we laid down an 11 × 11 grid of points over
the unit square. The response at each of these grid points is a deterministic trend plus a
spatially correlated stochastic process:

g(xi, yi) = µ(xi, yi) + G(xi, yi),

where

Cov (G(xi, yi), G(xj, yj)) = σ2 exp
{

log (ρ)
(

(xi − xj)
2 + (yi − yj)

2
)

1

2

}

.
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and the deterministic trend used was the plane

µ(i) = β0 + βxxi + βyyi.

Between the grid points, an interpolating thin plate spline was used to create a contin-
uous surface. Aldworth and Cressie did a similar study where they created a grid of points
with a planar trend and spatially correlated stochastic process (1999). However, in their
study, rather than using a spline to create a continuum, they used the grid points as the
population of interest.

The simulation was run for 48 different parameter settings. The sample size was either
m = 100 or m = 200. Two different deterministic trends were considered: β0 = 0.5, βx =
βy = 1 and β0 = 0.5, βx = βy = 0. We also varied the correlation between the points, ρ.
Runs were completed with values of ρ = 0.3487, 9.7656e−4, and 0, which gave correlations
of 0.9, 0.5, and 0, respectively, between points that were one grid unit apart (a distance of
0.1). A correlation of zero adds random noise to the grid points, while those of 0.5 and 0.9
create stochastic trends of varying smoothness. The observed z values were then

z(xi, yi) = β0 + βxxi + βyyi + G(xi, yi) + εi

where εi are independent, identically distributed normal random variables with Var(εi) =
ν2, and with G(xi, yi) the spatially correlated stochastic process defined above. Both the
case where ν2 = 0 and that when ν2 > 0 were considered. We chose different values of σ2

so that the spatially correlated stochastic process accounted for 5% and 15% of the total
variation in the response values at the grid points in the case with planar trend. That is,
for Var(G(xi, yi)) = σ2,

σ2

σ2 +
∫

1

0

∫

1

0
(µ(x, y))2dxdy −

(

∫

1

0

∫

1

0
µ(x, y)dxdy

)2

+ ν2

= 0.05 or 0.15

The calculations of total variability were done for the planar response, and the same values
of the variance parameters were used for the flat response. These two levels of variance
were chosen to create an overall smooth that is nearly deterministic, and one that has a
more substantial stochastic component. In the case of ν2 = 0, σ2 = 0.00877 for the 5% case
and 0.02632 for 15%. With ν2 > 0 and 5% of the total variation coming from the noise,
these values of σ2 become 0.008795 and 0.03214. The noise variance, ν2, is 0.008795 with
σ2 = .008795 and ν2 = 0.01033 when σ2 = .03214.

For one run of the simulation at a particular setting, the 11 × 11 grid of points was
generated. The spline was created, and the volume under the spline calculated by numerical
integration. This value was later used in bias calculations. Then, for each replication, we
took a simple random sample over the unit square. The interpolating spline was evaluated
at each sampled point.

For each sample, the four estimates and their estimated variances were calculated.
A sample was taken 100 times for each setting. Then, for each estimator, the average
estimate, the average estimated variance, the variance of the estimates, the percent bias of
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Settings Estimator Estimate Var(Est) Est.Var. %Bias Efficiency %Bias Var.

ρ = 0 HT 1.5064 0.000686 0.000859 0.546 16.092 5.281
PSSV=5% REG 1.4987 0.000021 0.000020 0.032 0.493 -3.810
Noise=0% LPR 1.4992 0.000043 0.000016 0.065 1.000 -61.502
True=1.4982 LPR0 1.5004 0.000067 0.000051 0.147 1.577 -24.851
ρ = 0.5 HT 1.5083 0.000729 0.000895 0.549 19.703 22.771
PSSV=5% REG 1.5005 1.58E-05 1.75E-05 0.025 0.427 10.759
Noise=0% LPR 1.4995 0.000043 9.98E-06 -0.041 1.000 -73.015
True=1.4982 LPR0 1.5013 6.51E-05 4.39E-05 0.079 1.759 -32.606
ρ = 0.9 HT 1.4708 8.28E-04 9.94E-04 0.585 26.938 19.995
PSSV=5% REG 1.4623 3.90E-06 4.47E-06 0.009 0.127 14.662
Noise=0% LPR 1.4624 3.08E-05 2.04E-06 0.012 1.000 -93.362
True=1.4622 LPR0 1.4640 6.22E-05 3.59E-05 0.125 2.022 -42.185
ρ = 0 HT 1.5053 6.96E-04 8.98E-04 0.565 8.423 29.121
PSSV=15% REG 1.4977 6.30E-05 6.05E-05 0.055 0.763 -4.030
Noise=0% LPR 1.4982 8.26E-05 4.91E-05 0.088 1.000 -40.533
True=1.4969 LPR0 1.4991 1.02E-04 8.86E-05 0.149 1.237 -13.251
ρ = 0.5 HT 1.5087 7.66E-04 9.60E-04 0.570 12.543 25.348
PSSV=15% REG 1.5008 4.73E-05 5.26E-05 0.044 0.774 11.409
Noise=0% LPR 1.4987 6.11E-05 3.00E-05 -0.097 1.000 -50.938
True=1.5002 LPR0 1.5006 8.84E-05 6.95E-05 0.030 1.448 -21.423
ρ = 0.9 HT 1.4436 9.28E-04 1.12E-03 0.634 24.692 20.698
PSSV=15% REG 1.4348 1.17E-05 1.34E-05 0.015 0.311 14.665
Noise=0% LPR 1.4345 3.76E-05 6.12E-06 -0.006 1.000 -83.711
True=1.4345 LPR0 1.4361 7.05E-05 4.38E-05 0.108 1.877 -37.869

Table 1: For all settings, 100 replications were run with a 11 × 11 population grid, and a
15 × 15 grid for the interpolation within the LPR estimator. PSSV is the proportion of
small-scale variation. This table presents the results for m = 200, µi = 0.5 + xi + yi, and
no noise.

the estimator, the relative efficiency of the estimator, as compared to the LPR estimator,
and the percent bias of the variance estimate were calculated. For the local polynomial
regression estimators, we used the product Epanechnikov kernel function with h = 0.35 in
both directions. This corresponds to approximately 1/8 of the total surface being included
in each smooth. Because the response surface is continuous, an estimate of the smooth
could not made for every population element. Rather, the smooth was evaluated over a
15 × 15 grid, and then a piecewise constant interpolation was used to extend the smooth
over the entire sampling space.

A sample output table is given in Table 1. From the simulation results, it can be
seen that the local polynomial regression estimator performs well, especially in the cases
where the parametric models are misspecified. In the case of planar trend, the regression
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estimator dominates all others. It should be noted that, for these parameter setting, the
LPR estimator does best in the case with a correlation of 0.5. This makes sense, since
when ρ = 0, the truth is close to a plane with random noise, and for the highest value of ρ,
the high correlation forces a flatter response surface. The 0.5 correlation creates a locally
smooth surface with peaks and valleys. Additionally, the LPR’s performance relative to the
regression estimator improves with the introduction of random error. For the simulation
runs with a flat plane, the LPR0 estimator outperforms all other estimators except when
there is no correlation in the data, and, even then, is competitive and is sometimes the
most efficient estimator. Here, the response surface is a smoothed spatially correlated
stochastic process, a situation in which local polynomial regression would be expected to
perform well. And because the underlying structure is flat, not planar, regression of degree
zero not surprisingly outperforms local planar regression. It should also be noted that in
limited simulations with higher levels of variance in the stochastic trend, the LPR estimator
dominated the other estimator for all values of the trend and ρ. The relative efficiencies of
the HT and REG estimators as compared to the LPR estimator are plotted in Figures 1
and 2 for a sample size of m = 100.

From these simulation results, it is apparent that there is a bias problem with the
variance estimation of the LPR estimators. For almost every parameter setting, both
variances estimates are negatively biased, often greatly so. We suspect much of this problem
can be attributed to under-smoothing. If the bandwidth is too small, the sampled kernel
smooth will follow the data points more closely than does the population level smooth.
This results in small residuals and underestimation of variance.

A few additional runs of the simulation program were made to see if increasing the
bandwidth would decrease the bias of the estimated variance of the local polynomial re-
gression estimator. Here, the original bandwidth would be used to estimate the parameter
of interest, and then the over-smoothing bandwidth would be used to obtain an estimate
of the variance. For the LPR estimator, this oversmoothing yields good estimates of the
variance in the case with no planar trend, but is still negatively biased for the planar case.
Higher bandwidths might solve that problem. For the LPR0 estimator, this bandwidth
over-corrects. The variance estimates are now positively biased, often highly so.

As previously mentioned, these simulations were done on a continuous population. In
the empirical example to follow, the data are discrete, made up of individual lakes. To
verify that these simulation results are applicable to a discrete population, a short additional
simulation study was performed. In this study, the 11×11 grid of points was set up, and the
spline calculated the same way as in the original study. Then, 10, 000 random points over
the unit square were selected. The interpolating spline was used to evaluate the response
surface at each of these points. These 10, 000 points then served as the population of
interest. For each repetition of the simulation, a simple random sample of these points was
selected. The estimators were evaluated as before, and summary statistics were computed
at the end of each run. The results, are very similar to those for the continuous population.
This suggests that the earlier simulation results are applicable to both continuous and
discrete resources.
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Figure 1: Simulation results for data with a planar trend. H= efficiency of HT relative to
LPR, R= efficiency of REG relative to LPR.
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Figure 2: Simulation results for data with no planar trend. H= efficiency of HT relative to
LPR, R= efficiency of REG relative to LPR.
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4 Empirical Example

We applied the two-dimensional nonparametric regression technique to the EMAP North-
eastern lakes survey. The sampling frame for this study consisted of over 20,000 lakes in 8
northeastern states. Over the course of 6 years, from 1991 to 1996, over 330 individual lakes
were visited, each from one to six times. Each individual lake was treated as a cluster, and
water samples within lakes (obtained on repeat visits) were treated as secondary sampling
units. During a visit, many variables of interest were measured and recorded. For the
purpose of this example, we examine the lake chemistry measures. Auxiliary information
is available for each lake. For this example, we worked with Universal Transverse Mercator
(UTM) coordinates, a form of spatial coordinates. For UTM coordinates, the world is
divided into 60 zones. Each zone has an origin point. The UTM coordinates of a spatial
location within the zone are then the meters to the north and east of this origin. The range
of the UTM easting coordinates in the Northeastern lakes data set is 108095 to 1127690,
and that of the UTM northing coordinates is 4311620 to 5263630. These location measures
can serve as a proxy for other spatial covariates, or account for spatial correlation. To
account for multiple visits to a single lake, we applied the technique to the lake averages.
Because of the type of variables used, population totals are not of interest; instead the
average was computed. We calculated nonparametric regression estimates of the average
lake mean for several lake chemistry measures.

Table 2 displays the average mean for four chemistry measures calculated using the
Horvitz-Thompson (HT), linear regression (REG), local linear regression (LPR), and local
constant (LPR0) estimators. The estimated coefficient of variation is also given. The model
assisted procedures are estimated to be much more efficient than the Horvitz-Thompson
estimator. Additionally, the local regression estimators are estimated to make small gains
over the linear regression estimator in each case. However, it was apparent from the
simulation study that the LPR variance estimator is negatively biased. Based on those
results, it is reasonable to conclude, for this example, that the LPR estimator improves
upon the Horvitz-Thompson estimator and is competitive with the regression estimator.
It should be noted that the trends in the variables over space are noisy, with weak linear
trends.

To minimize numerical errors, all UTM coordinates were divided by 1,000,000. For both
LPR and LPR0, a bandwidth of h = 0.22 was used in both the north-south (y) and east-
west (x) directions. This bandwidth is approximately 1/4 of the range of the standardized
UTM coordinates in each direction.

Variance estimation was done using a stratified with replacement approximation, where
the lakes were stratified by a clustering variable used in the original sampling process. The
original sampling plan contained built-in spatial control to ensure a well-dispersed sample
in space, with some similarity to systematic sampling (Larsen, et.al. 1993). The strati-
fication employed here is analogous to the standard collapsed-stratum variance estimator
for systematic sampling (Särndal, Swensson, and Wretman, p.423). The original sampling
frame consisted of all lakes with their centroids in a grid of hexagons. These hexagons were
spatially clustered. All clusters of hexagons were listed in random order, with the hexagons

10



Chemistry Measure HT REG LPR LPR0

Log K 2.845 2.916 2.921 2.890
(7.00%) (2.26%) (2.20%) (2.23%)

Log SO4 4.828 4.785 4.791 4.779
(6.94%) (1.00%) (0.95%) (1.01%)

Log Ca 5.835 5.723 5.742 5.760
(6.76%) (1.50%) (1.21%) (1.38%)

Log Cl 4.531 4.754 4.772 4.690
(6.97%) (2.27%) (1.91%) (2.10%)

Table 2: Estimated average mean of lake chemistry measures using Horvitz-Thompson
(HT), linear regression (REG), local linear regression (LPR) and local linear regression
fitting a local constant (LPR0). Numbers in parentheses are estimated coefficients of vari-
ation.

within a cluster randomly ordered and the lakes within a hexagon also listed randomly. A
systematic sample was then taken (Larsen et al. 1993). This design forced spatial control
in the sample.

To form the strata for the variance estimation, these spatial clusters were grouped
together into 14 larger clusters. These clusters were created by combining the old clusters
with their nearest neighbors. Each of the new clusters consists of between one and seven
of the original clusters, with each of the new clusters containing at least 19 but not more
than 122 lakes.

For many of the lakes, only one sample was taken. In order to estimate the variability in
the second stage of sampling, we assumed the variance within each lake was constant from
lake to lake. We then took the sample variance of all lakes with more than one sample.
The average of these sample variances was then taken to be the within lake variance for all
lakes.

5 Discussion and Conclusions

In this paper, we have introduced the local polynomial regression estimator in the context
of spatial sampling. This estimator incorporates known population auxiliary information
to improve status estimates. Here, the estimator was described in the situation where,
in addition to the sample data, the spatial location of every cluster in the population is
known. The estimator was given, then the performance of the local polynomial regression
estimator was examined through a simulation study. When the parametric model was in-
correctly specified, the LPR estimator outperformed standard parametric techniques. The
local polynomial regression technique was also applied to data from the EMAP Northeast-
ern lakes data set. The estimator also performed well in this setting, giving comparable
estimates, but smaller estimated standard errors than the other techniques. It should be
noted, however, that the simulation study showed that the variance estimator for local
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polynomial regression is negatively biased, greatly so if the data are under-smoothed.
Based on the results of the simulation study and the other work done here, the local

polynomial regression estimator is a reasonable modeling choice in spatial sampling. Unless
a population is known to have a planar trend, the local polynomial regression estimator
should perform better than other estimators, especially if the variable of interest is spatially
correlated or is highly variable. The local polynomial regression estimator also has the
advantage of requiring little modeling efforts. Because the estimate can be expressed in
terms of a weighted sum of sampled observations, with the weights remaining constant
from one variable to the next, the technique can easily and quickly be applied to many
study variables. In sampling with auxiliary information available for the entire population,
the local polynomial regression estimator should improve the precision of estimation in
populations with spatial correlation or other non-linear trends.
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