Illustrative Example

How many segments do you see?

\(\tau_1 = 51 \quad \tau_2 = 151 \quad \tau_3 = 251 \)

\(\text{time} \)
Illustrative Example

Auto-PARM = Auto-Piecewise AutoRegressive Modeling

4 pieces, 2.58 seconds.

\[\tau_1 = 51 \quad \tau_2 = 157 \quad \text{time} \quad \tau_3 = 259 \]
Introduction
 • Examples
 ▪ AR
 ▪ GARCH
 ▪ Stochastic volatility
 ▪ State space models

Model selection using Minimum Description Length (MDL)
 • General principles
 • Application to AR models with breaks

Optimization using a Genetic Algorithm
 • Basics
 • Implementation for structural break estimation

Simulation results

Applications

Simulation results for GARCH and SV models
1. Piecewise AR model:

\[Y_t = \gamma_j + \phi_{j1} Y_{t-1} + \cdots + \phi_{jp_j} Y_{t-p_j} + \sigma_j \varepsilon_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j, \]

where \(\tau_0 = 1 < \tau_1 < \ldots < \tau_{m-1} < \tau_m = n + 1 \), and \(\{\varepsilon_t\} \) is IID(0,1).

Goal: Estimate

- \(m \) = number of segments
- \(\tau_j \) = location of \(j^{th} \) break point
- \(\gamma_j \) = level in \(j^{th} \) epoch
- \(p_j \) = order of AR process in \(j^{th} \) epoch
- \((\phi_{j1}, \ldots, \phi_{jp_j}) \) = AR coefficients in \(j^{th} \) epoch
- \(\sigma_j \) = scale in \(j^{th} \) epoch
Piecewise AR models (cont)

Structural breaks:

Kitagawa and Akaike (1978)

- fitting locally stationary autoregressive models using AIC
- computations facilitated by the use of the Householder transformation

Davis, Huang, and Yao (1995)

- likelihood ratio test for testing a change in the parameters and/or order of an AR process.

Kitagawa, Takanami, and Matsumoto (2001)

- signal extraction in seismology-estimate the arrival time of a seismic signal.

Ombao, Raz, von Sachs, and Malow (2001)

- orthogonal complex-valued transforms that are localized in time and frequency- smooth localized complex exponential (SLEX) transform.
- applications to EEG time series and speech data.
Motivation for using piecewise AR models:

Piecewise AR is a special case of a *piecewise stationary process* (see Adak 1998),

\[\tilde{Y}_{t,n} = \sum_{j=1}^{m} Y_{t}^{j} I_{[\tau_{j-1}, \tau_{j})}(t/n), \]

where \(\{Y_{t}^{j}\}, j = 1, \ldots, m \) is a sequence of stationary processes. It is argued in Ombao et al. (2001), that if \(\{Y_{t,n}\} \) is a locally stationary process (in the sense of Dahlhaus), then there exists a piecewise stationary process \(\{\tilde{Y}_{t,n}\} \) with

\[m_{n} \rightarrow \infty \quad \text{with} \quad m_{n}/n \rightarrow 0, \quad \text{as} \quad n \rightarrow \infty, \]

that approximates \(\{Y_{t,n}\} \) (in average mean square).

Roughly speaking: \(\{Y_{t,n}\} \) is a locally stationary process if it has a time-varying spectrum that is approximately \(|A(t/n, \omega)|^2 \), where \(A(u, \omega) \) is a continuous function in \(u \).
Examples (cont)

2. Segmented GARCH model:

\[Y_t = \sigma_t \varepsilon_t, \]
\[\sigma_t^2 = \omega_j + \alpha_{j1} Y_{t-1}^2 + \cdots + \alpha_{jp} Y_{t-p}^2 + \beta_{j1} \sigma_{t-1}^2 + \cdots + \beta_{jq} \sigma_{t-q}^2, \quad \text{if } \tau_{j-1} \leq t < \tau_j, \]

where \(\tau_0 = 1 < \tau_1 < \ldots < \tau_{m-1} < \tau_m = n + 1, \) and \(\{\varepsilon_t\} \) is IID(0,1).

3. Segmented stochastic volatility model:

\[Y_t = \sigma_t \varepsilon_t, \]
\[\log \sigma_t^2 = \gamma_j + \phi_{j1} \log \sigma_{t-1}^2 + \cdots + \phi_{jp} \log \sigma_{t-p}^2 + \nu_j \eta_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j. \]

4. Segmented state-space model (SVM a special case):

\[p(y_t | \alpha_t, \ldots, \alpha_t, y_{t-1}, \ldots, y_1) = p(y_t | \alpha_t) \text{ is specified} \]
\[\alpha_t = \gamma_j + \phi_{j1} \alpha_{t-1} + \cdots + \phi_{jp} \alpha_{t-p} + \sigma_j \eta_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j. \]
Basics of MDL:
Choose the model which maximizes the compression of the data or, equivalently, select the model that minimizes the code length of the data (i.e., amount of memory required to encode the data).

\[M = \text{class of operating models for } y = (y_1, \ldots, y_n) \]

\[L_F(y) = \text{code length of } y \text{ relative to } F \in M \]

Typically, this term can be decomposed into two pieces (two-part code),

\[L_F(y) = L(\hat{F}|y) + L(\hat{e}|\hat{F}), \]

where

\[L(\hat{F}|y) = \text{code length of the fitted model for } F \]

\[L(\hat{e}|\hat{F}) = \text{code length of the residuals based on the fitted model} \]
Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:

\[Y_t = \gamma_j + \phi_{j1} Y_{t-1} + \cdots + \phi_{j_{p_j}} Y_{t-p_j} + \sigma_j \varepsilon_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j, \]

First term \(L(\hat{F} | y) : \)

\[
L(\hat{F} | y) = L(m) + L(\tau_1, \ldots, \tau_m) + L(p_1, \ldots, p_m) + L(\hat{\psi}_1 | y) + \cdots + L(\hat{\psi}_m | y)
\]

\[
= \log_2 m + m \log_2 n + \sum_{j=1}^{m} \log_2 p_j + \sum_{j=1}^{m} \frac{p_j + 2}{2} \log_2 n_j
\]

Encoding:

- integer \(I \) : \(\log_2 I \) bits (if \(I \) unbounded)
- \(\log_2 I_U \) bits (if \(I \) bounded by \(I_U \))

\(\text{MLE } \hat{\theta} : \frac{1}{2} \log_2 N \) bits (where \(N = \text{number of observations used to compute } \hat{\theta} ; \text{ Rissanen (1989)} \))
Second term \(L(\hat{e} | \hat{F}) \): Using Shannon’s classical results on information theory, Rissanen demonstrates that the code length of can be approximated by the negative of the log-likelihood of the fitted model, i.e., by

\[
L(\hat{e} | \hat{F}) \approx -\sum_{j=1}^{m} \log_2 L(\hat{\psi}_j | y)
\]

For fixed values of \(m, (\tau_1, p_1), \ldots, (\tau_m, p_m) \), we define the MDL as

\[
MDL(m, (\tau_1, p_1), \ldots, (\tau_m, p_m)) = \log_2 m + m \log_2 n + \sum_{j=1}^{m} \log_2 p_j + \sum_{j=1}^{m} \frac{p_j + 2}{2} \log_2 n_j - \sum_{j=1}^{m} \log_2 L(\hat{\psi}_j | y)
\]

The strategy is to find the best segmentation that minimizes \(MDL(m, \tau_1, p_1, \ldots, \tau_m, p_m) \). To speed things up for AR processes, we use Y-W estimates of AR parameters and we replace

\[-\log_2 L(\hat{\psi}_j | y) \text{ with } \log_2 (2\pi\hat{\sigma}^2_j) + n_j\]
Optimization Using Genetic Algorithms

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

• Start with an initial set of chromosomes, or population, of possible solutions to the optimization problem.

• Parent chromosomes are randomly selected (proportional to the rank of their objective function values), and produce offspring using crossover or mutation operations.

• After a sufficient number of offspring are produced to form a second generation, the process then restarts to produce a third generation.

• Based on Darwin’s theory of natural selection, the process should produce future generations that give a smaller (or larger) objective function.
Application to Structural Breaks—(cont)

Genetic Algorithm: Chromosome consists of n genes, each taking the value of -1 (no break) or p (order of AR process). Use natural selection to find a near optimal solution.

Map the break points with a chromosome c via

$$(m, (\tau_1, p_1) \ldots, (\tau_m, p_m)) \rightarrow c = (\delta_1, \ldots, \delta_n),$$

where

$$\delta_t = \begin{cases}
-1, & \text{if no break point at } t, \\
p_j, & \text{if break point at time } t = \tau_{j-1} \text{ and AR order is } p_j.
\end{cases}$$

For example,

$$c = (2, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, 3, -1, -1, -1, -1, -1)$$

t: 1 6 11 15

would correspond to a process as follows:

$$\text{AR}(2), t=1:5; \text{AR}(0), t=6:10; \text{AR}(0), t=11:14; \text{AR}(3), t=15:20$$
Implementation of Genetic Algorithm—(cont)

Generation 0: Start with L (200) randomly generated chromosomes, c_1, \ldots, c_L with associated MDL values, $MDL(c_1), \ldots, MDL(c_L)$.

Generation 1: A new child in the next generation is formed from the chromosomes c_1, \ldots, c_L of the previous generation as follows:

- with probability π_c, crossover occurs.
 - two parent chromosomes c_i and c_j are selected at random with probabilities proportional to the ranks of $MDL(c_i)$.
 - k^{th} gene of child is $\delta_k = \delta_{i,k}$ w.p. $\frac{1}{2}$ and $\delta_{j,k}$ w.p. $\frac{1}{2}$

- with probability $1-\pi_c$, mutation occurs.
 - a parent chromosome c_i is selected
 - k^{th} gene of child is $\delta_k = \delta_{i,k}$ w.p. π_1; -1 w.p. π_2; and ρ w.p. $1-\pi_1-\pi_2$.
Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until *convergence* or until a *maximum number of generations* has been reached.

Various Strategies:

- include the *top ten* chromosomes from last generation in next generation.

- use multiple *islands*, in which populations run independently, and then allow *migration* after a fixed number of generations.

This implementation is amenable to *parallel computing*.
Simulation Examples-based on Ombao et al. (2001) test cases

1. Piecewise stationary with dyadic structure: Consider a time series following the model,

\[
Y_t = \begin{cases}
.9Y_{t-1} + \varepsilon_t, & \text{if } 1 \leq t < 513, \\
1.69Y_{t-1} - .81Y_{t-2} + \varepsilon_t, & \text{if } 513 \leq t < 769, \\
1.32Y_{t-1} - .81Y_{t-2} + \varepsilon_t, & \text{if } 769 \leq t \leq 1024,
\end{cases}
\]

where \(\{\varepsilon_t\} \sim \text{IID } N(0,1)\).
1. Piecewise stat (cont)

Implementation: Start with $NI = 50$ islands, each with population size $L = 200$.

After every $Mi = 5$ generations, allow migration.

Replace worst 2 in Island 2 with best 2 from Island 4.

Stopping rule: Stop when the max MDL does not change for 10 consecutive migrations or after 100 migrations.

Span configuration for model selection: Max AR order $K = 10$,

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7-10</th>
<th>11-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_p</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>π_p</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
</tr>
</tbody>
</table>
GA results: 3 pieces breaks at $\tau_1=513$; $\tau_2=769$. Total run time 16.31 secs

Fitted model:

<table>
<thead>
<tr>
<th>Interval</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-512</td>
<td>0.857</td>
<td></td>
<td>0.9945</td>
</tr>
<tr>
<td>513-768</td>
<td>1.68</td>
<td>-0.801</td>
<td>1.1134</td>
</tr>
<tr>
<td>769-1024</td>
<td>1.36</td>
<td>-0.801</td>
<td>1.1300</td>
</tr>
</tbody>
</table>
2. Slowly varying AR(2) model:

\[Y_t = a_t Y_{t-1} - 0.81 Y_{t-2} + \varepsilon_t \quad \text{if} \quad 1 \leq t \leq 1024 \]

where \(a_t = 0.8[1 - 0.5 \cos(\pi t / 1024)] \), and \(\{\varepsilon_t\} \sim \text{IID N}(0,1) \).
2. Slowly varying AR(2) (cont)

GA results: 3 pieces, breaks at \(\tau_1=293, \tau_2=615 \). Total run time 27.45 secs

Fitted model:

<table>
<thead>
<tr>
<th>Time</th>
<th>(\phi_1)</th>
<th>(\phi_2)</th>
<th>(\sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-292</td>
<td>0.365</td>
<td>-0.753</td>
<td>1.149</td>
</tr>
<tr>
<td>293-614</td>
<td>0.821</td>
<td>-0.790</td>
<td>1.176</td>
</tr>
<tr>
<td>615-1024</td>
<td>1.084</td>
<td>-0.760</td>
<td>0.960</td>
</tr>
</tbody>
</table>

True Model

Fitted Model
2. Slowly varying AR(2) (cont)

In the graph below right, we average the spectogram over the **GA fitted models** generated from each of the 200 simulated realizations.

True Model

Average Model
4. Simulated data from Fearnhead (2005):

True model has 9 changepoints

MAP est of $m=9$ while MAP of m and changepoint locations gives $m=8$ changepts. Plot is conditional on 9 changepoints.
4. Fearnhead example

True Model

Fitted APARM Model
Theory

Consistency.

Suppose the number of change points m is known and let

$$\lambda_1 = \tau_1 / n, \ldots, \lambda_m = \tau_m / n$$

be the relative (true) changepoints. Then

$$\hat{\lambda}_j \to \lambda_j \text{ a.s.}$$

where $\hat{\lambda}_j = \hat{\tau}_j / n$ and $\hat{\tau}_j = \text{Auto-PARM estimate of } \tau_j$.

Consistency of the estimate of m?

- For n large, Auto-PARM estimate is $\geq m$.
- Have not proved equality.
Examples

Speech signal: GREASY
Speech signal: GREASY

\(n = 5762 \) observations

\(m = 15 \) break points

Run time = 18.02 secs
Examples

Mine explosion seismic trace in Scandinavia: (Shumway and Stoffer 2000, Stoffer et al. 2005)

Two waves: P (primary) compression wave and S (shear) wave
Examples

AR orders: 1 7 17 13 15
M-Stationarity (Gray et al): \(\text{Cov}(Y(t), Y(t\tau)) = R(\tau) \).

- This notion corresponds to a *time-deformation* (logarithmic in this case) to make the transformed process stationary in the ordinary sense.

- The *Euler* process (Gray and Zhang ‘98) is an example of an M-stationary process.
Garch(1,1) model: \(Y_t = \sigma_t \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID}(0,1) \)

\[\sigma_t^2 = \omega_j + \alpha_j Y_{t-1}^2 + \beta_j \sigma_{t-1}^2, \quad \text{if } \tau_{j-1} \leq t < \tau_j. \]

\[
\sigma_t^2 = \begin{cases}
0.4 + 1.1 Y_{t-1}^2 + 0.5 \sigma_{t-1}^2, & \text{if } 1 \leq t < 501 \\
0.4 + 1.1 Y_{t-1}^2 + 0.6 \sigma_{t-1}^2, & \text{if } 501 \leq t < 1000
\end{cases}
\]

CP estimate = 506

AG = Andreou and Ghysels (2002)
Application to GARCH (cont)

Garch(1,1) model:

\[Y_t = \sigma_t \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID}(0,1) \]

\[\sigma_t^2 = \omega_j + \alpha_j Y_{t-1}^2 + \beta_j \sigma_{t-1}^2, \quad \text{if } \tau_{j-1} \leq t < \tau_j. \]

\[
\sigma_t^2 = \begin{cases}
0.4 + 1.1Y_{t-1}^2 + 0.5\sigma_{t-1}^2, & \text{if } 1 \leq t < 501 \\
0.4 + 1.1Y_{t-1}^2 + 0.8\sigma_{t-1}^2, & \text{if } 501 \leq t < 1000
\end{cases}
\]

CP estimate = 502

AG = Andreou and Ghysels (2002)

<table>
<thead>
<tr>
<th># of CPs</th>
<th>GA %</th>
<th>AG %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>96.4</td>
<td>95.0</td>
</tr>
<tr>
<td>≥ 2</td>
<td>3.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Application to GARCH (cont)

More simulation results for Garch(1,1): \[Y_t = \sigma_t \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID}(0,1) \]

\[
\sigma_t^2 = \begin{cases}
.05 + .4Y_{t-1}^2 + .3\sigma_{t-1}^2, & \text{if } 1 \leq t < \tau_1, \\
1.00 + .3Y_{t-1}^2 + .2\sigma_{t-1}^2, & \text{if } \tau_1 \leq t < 1000
\end{cases}
\]

<table>
<thead>
<tr>
<th>(\tau_1)</th>
<th>Mean</th>
<th>SE</th>
<th>Med</th>
<th>Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>GA</td>
<td>52.62</td>
<td>11.70</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Berkes</td>
<td>71.40</td>
<td>12.40</td>
<td>71</td>
</tr>
<tr>
<td>250</td>
<td>GA</td>
<td>251.18</td>
<td>4.50</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Berkes</td>
<td>272.30</td>
<td>18.10</td>
<td>271</td>
</tr>
<tr>
<td>500</td>
<td>GA</td>
<td>501.22</td>
<td>4.76</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>Berkes</td>
<td>516.40</td>
<td>54.70</td>
<td>538</td>
</tr>
</tbody>
</table>

Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

\[p(y_t \mid \alpha_t) = \exp\{\alpha_t y_t - b(\alpha_t) + c(y_t)\}. \]

State equation: \{\alpha_t\} follows the piecewise AR(1) model given by

\[\alpha_t = \gamma_k + \phi_k \alpha_{t-1} + \sigma_k \varepsilon_t, \quad \text{if} \quad \tau_{k-1} \leq t < \tau_k, \]

where \(1 = \tau_0 < \tau_1 < \ldots < \tau_m < n, \) and \{\varepsilon_t\} ~ IID N(0,1).

Parameters:

- \(m = \) number of break points
- \(\tau_k = \) location of break points
- \(\gamma_k = \) level in \(k^{th} \) epoch
- \(\phi_k = \) AR coefficients \(k^{th} \) epoch
- \(\sigma_k = \) scale in \(k^{th} \) epoch
Application to Structural Breaks—(cont)

Estimation: For \((m, \tau_1, \ldots, \tau_m)\) fixed, calculate the approximate likelihood evaluated at the “MLE”, i.e.,
\[
L_a(\hat{\psi}; y_n) = \frac{|G_n|^{1/2}}{(K + G_n)^{1/2}} \exp \left\{ y_n^T \alpha^* - 1^T \left\{ b(\alpha^*) - c(y_n) \right\} - (\alpha^* - \mu)^T G_n (\alpha^* - \mu) / 2 \right\},
\]
where \(\hat{\psi} = (\hat{\gamma}_1, \ldots, \hat{\gamma}_m, \hat{\phi}_1, \ldots, \hat{\phi}_m, \hat{\sigma}_1^2, \ldots, \hat{\sigma}_m^2)\) is the MLE.

Goal: Optimize an objective function over \((m, \tau_1, \ldots, \tau_m)\).

- use minimum description length (MDL) as an objective function
- use genetic algorithm for optimization
Count Data Example

Model: $Y_t | \alpha_t \sim Pois(\exp{\beta + \alpha_t})$, $\alpha_t = \phi \alpha_{t-1} + \varepsilon_t$, $\{\varepsilon_t\} \sim$ IID $N(0, \sigma^2)$

True model:

- $Y_t | \alpha_t \sim Pois(\exp{.7 + \alpha_t})$, $\alpha_t = .5\alpha_{t-1} + \varepsilon_t$, $\{\varepsilon_t\} \sim$ IID $N(0, .3)$, $t < 250$
- $Y_t | \alpha_t \sim Pois(\exp{.7 + \alpha_t})$, $\alpha_t = -.5\alpha_{t-1} + \varepsilon_t$, $\{\varepsilon_t\} \sim$ IID $N(0, .3)$, $t > 250$.
- GA estimate 251, time 267secs
SV Process Example

Model: \(Y_t \mid \alpha_t \sim N(0, \exp(\alpha_t)), \ \alpha_t = \gamma + \phi \alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID } N(0, \sigma^2) \)

True model:
- \(Y_t \mid \alpha_t \sim N(0, \exp(\alpha_t)), \ \alpha_t = -.05 + .975\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID } N(0, .05), \ t \leq 750 \)
- \(Y_t \mid \alpha_t \sim N(0, \exp(\alpha_t)), \ \alpha_t = -.25 + .900\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID } N(0, .25), \ t > 750. \)
- GA estimate 754, time 1053 secs
SV Process Example

Model: \(Y_t \mid \alpha_t \sim N(0, \exp(\alpha_t)) \), \(\alpha_t = \gamma + \phi \alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim \text{IID } N(0, \sigma^2) \)

True model:
- \(Y_t \mid \alpha_t \sim N(0, \exp(\alpha_t)) \), \(\alpha_t = -0.175 + 0.977\alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim \text{IID } N(0, 0.1810) \), \(t \leq 250 \)
- \(Y_t \mid \alpha_t \sim N(0, \exp(\alpha_t)) \), \(\alpha_t = -0.010 + 0.996\alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim \text{IID } N(0, 0.0089) \), \(t > 250 \).
- GA estimate 251, time 269s

Columbia 5/06
SV Process Example-(cont)

True model:
- \(Y_t \mid \alpha_t \sim N(0, \exp \{\alpha_t\}) \), \(\alpha_t = -0.175 + 0.977\alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim \text{IID } N(0, 0.1810), \ t \leq 250 \)
- \(Y_t \mid \alpha_t \sim N(0, \exp \{\alpha_t\}) \), \(\alpha_t = -0.010 + 0.996\alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim \text{IID } N(0, 0.0089), \ t > 250. \)

Fitted model based on no structural break:
- \(Y_t \mid \alpha_t \sim N(0, \exp \{\alpha_t\}) \), \(\alpha_t = -0.0645 + 0.9889\alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim \text{IID } N(0, 0.0935) \)
Fitted model based on no structural break:

- $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\})$, $\alpha_t = -0.0645 + 0.9889\alpha_{t-1} + \varepsilon_t$, $\{\varepsilon_t\}$~IID $N(0, 0.0935)$
Summary Remarks

1. *MDL* appears to be a good criterion for detecting structural breaks.

2. Optimization using a *genetic algorithm* is well suited to find a near optimal value of MDL.

3. This procedure extends easily to *multivariate* problems.

4. While estimating structural breaks for nonlinear time series models is *more challenging*, this paradigm of using *MDL together GA* holds promise for break detection in *parameter-driven* models and other nonlinear models.