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Introduction

Bayesian Networks

e Bayesian Networks (BNs) are a method for representing complex multivari-
ate probability distributions.
— Graphical Structure: Directed Acyclic Graph
* Each node represents a variable
* An edge represents an association between two variables
— Parametrical Model: Multivariate Gaussian

* Data are independent, multivariate Gaussian
* Parameters are multivariate Gaussian

* Marginal distribution of each node (variable) is a multiple regression
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Introduction

Bayesian Networks
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e Important point: despite the arrows, BNs represent a probability

distribution and do not imply causations, only associations.

STARMAP/DAMARS Conference Page 4



RIJMCMC for BNs, w/Application Stephen Jensen

Introduction

Reversible Jump Markov chain Monte Carlo

e MCMC is a method for simulating a probability distribution that can-
not be directly simulated. MCMC is often used for model selection,

especially in very large model spaces.

e RIMCMC is a type of MCMC that allows for dimensional changes in
the probability distribution being simulated. RIMCMC can be used
for model selection in cases where dimensionality may change, such

as:
— ARIMA time series models

— Gaussian Mixtures
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RIMCMC for BNs

e RIMCMC is suited to searching for BNs because:

— A change in the graphical structure of a BN results in a change in

the number of parameters

— The number of possible structures of BNs increases super-exponentially

in the number of variables.
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RIMCMC for BNs

e How it works:

— RIMCMC randomly “walks around” the space of possible model
structures by changing one edge at a time — called structural

learning.

— At each step in its “walk”, all of the model parameters are updated

— called parametrical learning.

— At the end, you have a list of all of the model structures it visited

at each step and their corresponding set of parameters.
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Example: MAHA-MAIA
e Subset of numerical data taken from the MAHA-MAIA study.

e Six variables chosen, with help of a domain expert:
— Insect IBI - Insect Index of Biotic Integrity

— Sediment Disturbance - A log-scale metric of excess grain-size

diameter

— Environmental disturbance - Combined percentages of disturbance

(urban, agricultural, and mining disturbances)
— pH
— Natural logarithm of nutrients (maximum of either N or P)

— Natural logarithm of slightly translated Acid Neutralizing Capacity
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Example: MAHA-MAIA

Implementation notes
e To avoid numerical issues, variables were standardized.

e Three graphical structures are presented:
— The structure with the maximum posterior probability,

— The “average” model, which gives us a sense of the likelihood of

an association between pairs of variables,

— A reference model obtained from the package TETRAD IV.

e +’s and -'s, derived from the learned parameters, denote the type of

guantitative association between variables.
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Example: MAHA-MAIA

Maximum posterior probability structure

Disturbance
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Example: MAHA-MAIA

Posterior probabilities of all visited structures
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Example: MAHA-MAIA

“Average” structure

Note: edges with posterior probability < .3 not shown
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Example: MAHA-MAIA

Structure discovered by TETRAD IV

Note: undirected edge on right can be oriented either direction

Disturbance

Nutrients
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Example: MAHA-MAIA

Discussion

e The +’s and -'s seem reasonable, and the structures agree, but the
direction of the edges from Bug_IBlI seem to preclude a causal inter-

pretation.

e Recall that BNs encode a joint probability distribution and don’t nec-

essarily suggest a causal relation.

e Try again, but remove models from consideration that include edges

emanating from Bug_IBI.
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Example: MAHA-MAIA (2)

Maximum posterior probability structure

¢ .
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Example: MAHA-MAIA (2)

Posterior probabilities of all visited structures
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Example: MAHA-MAIA (2)

“Average” structure

Note: edges with posterior probability < .3 not shown

Disturbance
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Example: MAHA-MAIA (2)

Structure discovered by TETRAD IV

Bug_IBI

STARMAP/DAMARS Conference Page 18



RIJMCMC for BNs, w/Application Stephen Jensen

Conclusion

e Finding an optimal BN that fits data is known to be a very hard prob-

lem (NP-hard, in fact), making heuristic algorithms a necessity.

e Though many of these algorithms are much faster than RIMCMC, in-
creases in computing power and programming refinements are mak-
Ing its lack of speed less of an issue.

e Furthermore, other methods lack the unique strengths of RIMCMC.:

— Posterior edge probabilities give a measure of the likelihood of

association
— Combined structure discovery and parameter learning

— Fully Bayesian solution
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