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Model Selection for Geostatistical Models

MOTIVATION
e Many investigators have looked at model selection but nobimext of geostatistical models.

e We will show that ignoring the spatial dependence in therestrmicture can have a profound effect
on the model selected.

Consider a problem where we observe some respgrage: locations such that
Z =(Z(s1),...,2(sn)).
e At each location we also obserye- 1 explanatory variables.e., at locations we observe
Xl(S), ce ,Xp_l(S).

A linear model forZ is given by

Z(s) = Bo+ Xi(s)B1 + -+ + X,-1(5)Bp—1 + 0(s).
e Which explanatory variables should be included?

e What is the form of the model fa¥(s)?
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Model Selection for Geostatistical Models

PROBLEM: How does one choose the “best” set of covariates and farhdpwariance functions?

Potential Objectives of Model Selection

1. Choose the correct modelonsistency)

e There exists a “true” finite-dimensional model.
¢ If not a finite-dimensional model, at least include the keglaratory variables.

2. Choose the model that is best for prediction or interpagefficiency)
e Find a model that predicts well at unobserved locations.
3. Choose the model that maximizes data compression.

e Find a model that summarizes the data in the most compadbfash
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The Geostatistical Model

LetZ = (Z(s1),...,Z(s,)) be a partial realization of a random fiéls), wheres € D, a fixed finite
area under study.

A model for the random field at any locatiens given by
Z(s) = X/(5)B +d(s),
where
e X(s)=(1,Xi(s),...,X,-1(s))" is ap-vector of explanatory variables observed at location
e 3 is ap-vector of unknown coefficients, and
e §(s) is the unobserved regression error at location

We assume that the error procéss) is a stationary, isotropic Gaussian process with mean zeto a
covariance function
Cov(d(s), d(t)) = o°p(d. B),
where
e o is the variance of the process,
e d = ||s — t|| is the Euclidean distance between locatieasdt, and

e p(+,0) is an isotropic correlation function depending oh dimensional parameter vect@r
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Matéern Autocorrelation Function

The Magrn autocorrelation function is defined as

1 2G5\ o (240,
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whereCy,(-) is the modified Bessel function.

p(d,0) = ) : 01,02 >0,

Fixed range parametet; = 4.00 Fixed smoothness parametér,= 1.00
— Exponential
--- 09=0.75 e
69=2.00

<= 09=4.00
--- Gaussian

c C o

e 8

ks ki

o o

5 5

O g O

0 1 2 3 4 0 2 4 6 8 10
Distance Distance

Monitoring Science & Technology Symposium - Denver, Se(liten2004



Estimation

Parameter estimation can proceed using one of severahlkal based approaches or a Bayesian
approach. Here we consider the former.

The log-likelihood of the paramete(8, 3, o2) given the dataZ, is

log Ly (8,0,0%) —% log |o°Q2| — # (Z-XpB)Q 1 (Z-Xp),

where(2 = [p(d, 8)] represents the matrix of correlations between all pairdetovations.

Estimation can proceed via an iterative maximum (profilkgllhood approach or via a restricted
maximum likelihood (REML) approach.

e Although REML estimates often have more desirable samgirogerties, their performance for
model selection is not clear.

The resulting logprofile likelihood is

A 1 n ) n
Kpmfile(a;/ga 027 Z) = _5 lOg ‘Q‘ — 5 log (0-2) _ 57
where 1
B — (X/Q—lX)—lX/Q—lz and 6'2 = (Z _ XB)/Q—l(Z . XB)

n
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AIC for Geospatial Models

Suppose
*Z~ [r
e {f(-;¢), ¥ € ¥} is afamily of candidate probability density functions

The Kullback-Leibler information betweefi-; 1) and f7 is defined by

1) = [ -2t (f ]ETZ(;;”)) ) fr(z)dz.

e Measures the distance betwegn ) and fr.
e Quantifies the loss of information whéft-; ¢) is used as the model for the data insteadof

The quantity
p+k+1
n—p—k—2
referred to as the corrected AIC, is an approximately udgi&stimate of the expected
Kullback-Leibler information.

AICC = —2log L4(8,0,6%) + 2n
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Model Selection and Spatial Correlation

Traditional approach to model selection:
1. Select explanatory variables to model the large scalatian.

e Select the best set of explanatory variablghoutconsidering the dependence between
locations.

2. Estimate correlation function parameters using ressduam model in step 1.
3. Re-estimate regression parameters using GLS.
4. Iterate steps 2 and 3.
Limitations:
e Ignores potential confounding between explanatory véeghnd correlation in spatial process.
e Ignoring autocorrelation function can mask importancexpi@natory variables.

Proposed Solutior Fit all candidate models assuming dependence betweetnlesand select the
model(s) with the smallest spatial AICC.
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Model Selection: Simulation Set-up

Simulations: Compare model selection performance of Al@Grdependent error regression model
and geostatistical model.

1. Sampling Design:100 locations simulated in a random pattern.

2. Explanatory Variables: Five possible explanatory variables such that
1d
X17 X27 X37 X47 X5 ~ \/% tlZ-

3. Response:
Z =2+40.75X14+0.50X5+0.25X3+ 9,

whered is a Gaussian random field with mean zerd= 50, and autocorrelation Matn with
parameterg; = 4 andd, = 1.

4. Replicates:500 replicates were simulated with a new Gaussian randodhdexierated for each
replication.

5. AICC: Computed foR® = 32 possible models per replicate.
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Model Selection: Random Pattern Sampling Design
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Model Selection: Simulation Results for the Random Pattern

¢ Independent AICC and Spatial AICC report the percentagewilations that each model was
selected.

e Of the 32 possible models, the results given here includgthiolse with 10% or more support for
one of the models.

e The two methods agree only 17 times over the 500 simulat®484).

: : Spatial Independent
Variables in Model AICC AICC
X1, Xy, X3 56.0 2.4
X1, Xy, X3, X5 14.4 0.2
X1, X9, X3, X, 10.8 0.2
X, X, 10.2 8.4
Intercept only 0.0 26.8
X, 0.4 14.2
X 0.0 13.8
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Prediction: Prediction Error

Simulations:

e Performed model selection and estimation using 100 obsengand evaluated prediction
performance using 100 additional observations simulaseabave.

e Evaluated predictive performance.

Mean Square Prediction Error:
100

1 N2
MSPE= —— (Z- _ Z~>
> 100]_2 b

whereZ; is the true value at Iocatio;ﬁande is theuniversal krigingpredictor at location using the
maximum likelihood estimates of the parameter valygss?, 0).
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Prediction: Mean Square Prediction Error (MSPE)

e The mean MSPE for the spatial AICC is 16.9% smaller than thteoindependent AICC.
e Spatial AICC reduces the mean MSPE by 39.6% if the noise isasd to be independent.

15 20

MSPE
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n
n

Spatial AICC Independent AICC
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Prediction: Predictive Coverage

For a 95% prediction interval, do 95% of the observed datarfaheir corresponding prediction
intervals?

Simulations:

e For each of the 500 simulations, we compute predictive ageand examine

— the mean predictive coverage.
— the standard error of predictive coverage.

Model Selection ProceduréMean| Std Error
Independent AICC 0.95| 0.008
Spatial AICC 0.92| 0.011
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Application: Lizard Abundance

e Applied the model selection strategy to the orange-thcbad@ptail lizard data set (Ver Hoett al.
(2001)).

— Response variable isg(lizard abundance) at 148 highly clustered sites througbouthern
California.

— Explanatory variables include a single catergorical \@ei@nd five continuous variables for a
total of 5 x 2° = 160 unique models.

e The model selected coincides with that of Ver Heeél.
— The selected model contains variables 1 and 4 only.

e Generated 100 simulated response data sets using theegateatiel and applied the spatial AICC
model selection procedure.
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Application: Sampling Pattern for the Lizard Abundancedytu
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Model Selection: Simulation Results for the Lizard Abunclaata

¢ Independent AICC and Spatial AICC report the percentagewilations that each model was
selected.

e Of the 160 possible models, the results given here inclufletbase with 10% or more support
for one of the models.

: : Spatial Independent
Variables in Model AICC AICC
X1, X, 75.0 5.0
X1, X4, X5, X3 1.0 10.0
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Conclusions

e We advise against ignoring spatial correlation when sglg&xplanatory variables.

— Model choice for prediction should involyeint selection of the explanatory variables and the
form of the autocorrelation function.

e The model selection methodology presented here can bg edsipted for use with other
information criterion.

— Bayesian Information Criterion (BIC).
— Minimum Description Length (MDL).

e The sampling pattern can severely impact model selectimmpbete results not presented here).

— Simulation studies demonstrate that this selection metlogg is even more successful for
lightly and heavily clustered sampling patterns.
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Additional Ongoing Work

e Model Selection: We are investigating the asymptotic badraf AIC as a function ofnfill and
expanding domain

e Geostatistics: We are looking at the impact of fitting (olifiagy to fit) a nugget parameter during
modeling.
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