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Model Selection for Geostatistical Models

MOTIVATION

• Many investigators have looked at model selection but not incontext of geostatistical models.

• We will show that ignoring the spatial dependence in the error structure can have a profound effect
on the model selected.

Consider a problem where we observe some responseZ atn locations such that
Z = (Z(s1), . . . , Z(sn))

′.

• At each location we also observep− 1 explanatory variables,i.e., at locations we observe
X1(s), . . . , Xp−1(s).

A linear model forZ is given by

Z(s) = β0 +X1(s)β1 + · · · +Xp−1(s)βp−1 + δ(s).

• Which explanatory variables should be included?

• What is the form of the model forδ(s)?
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Model Selection for Geostatistical Models

PROBLEM: How does one choose the “best” set of covariates and family of covariance functions?

Potential Objectives of Model Selection

1. Choose the correct model(consistency).

• There exists a “true” finite-dimensional model.

• If not a finite-dimensional model, at least include the key explanatory variables.

2. Choose the model that is best for prediction or interpolation (efficiency).

• Find a model that predicts well at unobserved locations.

3. Choose the model that maximizes data compression.

• Find a model that summarizes the data in the most compact fashion.

Monitoring Science & Technology Symposium - Denver, September 2004 3



The Geostatistical Model

Let Z = (Z(s1), . . . , Z(sn))
′ be a partial realization of a random fieldZ(s), wheres ∈ D, a fixed finite

area under study.

A model for the random field at any locations is given by

Z(s) = X
′(s)β + δ(s),

where

• X(s) = (1, X1(s), . . . , Xp−1(s))
′ is ap-vector of explanatory variables observed at locations,

• β is ap-vector of unknown coefficients, and

• δ(s) is the unobserved regression error at locations.

We assume that the error processδ(s) is a stationary, isotropic Gaussian process with mean zero and
covariance function

Cov(δ(s), δ(t)) = σ2ρ(d,θ),

where

• σ2 is the variance of the process,

• d = ||s− t|| is the Euclidean distance between locationss andt, and

• ρ(·,θ) is an isotropic correlation function depending on ak dimensional parameter vectorθ.
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Matérn Autocorrelation Function

The Mat́ern autocorrelation function is defined as

ρ(d,θ) =
1

2θ2−1Γ (θ2)

(

2d
√
θ2

θ1

)θ2

Kθ2

(

2d
√
θ2

θ1

)

, θ1, θ2 > 0,

whereKθ2(·) is the modified Bessel function.

Fixed range parameter,θ1 = 4.00
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Estimation

Parameter estimation can proceed using one of several likelihood based approaches or a Bayesian
approach. Here we consider the former.

The log-likelihood of the parameters
(

θ,β, σ2
)

given the data,Z, is

logLZ

(

β,θ, σ2
)

∝ −1

2
log

∣

∣σ2
Ω

∣

∣ − 1

2σ2
(Z − Xβ)′ Ω−1 (Z − Xβ) ,

whereΩ = [ρ(d,θ)] represents the matrix of correlations between all pairs of observations.

Estimation can proceed via an iterative maximum (profile) likelihood approach or via a restricted
maximum likelihood (REML) approach.

• Although REML estimates often have more desirable samplingproperties, their performance for
model selection is not clear.

The resulting logprofile likelihood is

ℓprofile(θ; β̂, σ̂2,Z) = −1

2
log |Ω| − n

2
log

(

σ̂2
)

− n

2
,

where
β̂ = (X ′

Ω
−1X)−1X ′

Ω
−1Z and σ̂2 =

1

n
(Z − Xβ̂)′Ω−1(Z − Xβ̂).
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AIC for Geospatial Models

Suppose

• Z ∼ fT

• {f(·;ψ), ψ ∈ Ψ} is a family of candidate probability density functions

The Kullback-Leibler information betweenf(·;ψ) andfT is defined by

I(ψ) =

∫

−2 log

(

f(z;ψ)

fT (z)

)

fT (z)dz.

• Measures the distance betweenf(·;ψ) andfT .

• Quantifies the loss of information whenf(·;ψ) is used as the model for the data instead offT .

The quantity

AICC = −2 logLZ(β̂, θ̂, σ̂2) + 2n
p + k + 1

n− p− k − 2
,

referred to as the corrected AIC, is an approximately unbiased estimate of the expected
Kullback-Leibler information.
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Model Selection and Spatial Correlation

Traditional approach to model selection:

1. Select explanatory variables to model the large scale variation.

• Select the best set of explanatory variableswithoutconsidering the dependence between
locations.

2. Estimate correlation function parameters using residuals from model in step 1.

3. Re-estimate regression parameters using GLS.

4. Iterate steps 2 and 3.

Limitations:

• Ignores potential confounding between explanatory variables and correlation in spatial process.

• Ignoring autocorrelation function can mask importance of explanatory variables.

Proposed Solution– Fit all candidate models assuming dependence between locations and select the
model(s) with the smallest spatial AICC.
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Model Selection: Simulation Set-up

Simulations: Compare model selection performance of AICC for independent error regression model
and geostatistical model.

1. Sampling Design:100 locations simulated in a random pattern.

2. Explanatory Variables: Five possible explanatory variables such that

X1, X2, X3, X4, X5

iid∼
√

10

12
t12.

3. Response:
Z = 2 + 0.75X1 + 0.50X2 + 0.25X3 + δ,

whereδ is a Gaussian random field with mean zero,σ2 = 50, and autocorrelation Matérn with
parametersθ1 = 4 andθ2 = 1.

4. Replicates:500 replicates were simulated with a new Gaussian random field generated for each
replication.

5. AICC: Computed for25 = 32 possible models per replicate.
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Model Selection: Random Pattern Sampling Design
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Model Selection: Simulation Results for the Random Pattern

• Independent AICC and Spatial AICC report the percentage of simulations that each model was
selected.

• Of the 32 possible models, the results given here include only those with 10% or more support for
one of the models.

• The two methods agree only 17 times over the 500 simulations (3.4%).

Variables in Model
Spatial Independent
AICC AICC

X1,X2,X3 56.0 2.4
X1,X2,X3,X5 14.4 0.2
X1,X2,X3,X4 10.8 0.2
X1,X2 10.2 8.4
Intercept only 0.0 26.8
X1 0.4 14.2
X2 0.0 13.8

Monitoring Science & Technology Symposium - Denver, September 2004 11



Prediction: Prediction Error

Simulations:

• Performed model selection and estimation using 100 observations and evaluated prediction
performance using 100 additional observations simulated as above.

• Evaluated predictive performance.

Mean Square Prediction Error:

MSPE=
1

100

100
∑

j=1

(

Zj − Ẑj

)2

whereZj is the true value at locationj andẐj is theuniversal krigingpredictor at locationj using the
maximum likelihood estimates of the parameter values,(β̂, σ̂2, θ̂).
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Prediction: Mean Square Prediction Error (MSPE)

• The mean MSPE for the spatial AICC is 16.9% smaller than that of the independent AICC.

• Spatial AICC reduces the mean MSPE by 39.6% if the noise is assumed to be independent.
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Prediction: Predictive Coverage

For a 95% prediction interval, do 95% of the observed data fall in their corresponding prediction
intervals?

Simulations:

• For each of the 500 simulations, we compute predictive coverage and examine

– the mean predictive coverage.

– the standard error of predictive coverage.

Model Selection ProcedureMean Std Error
Independent AICC 0.95 0.008
Spatial AICC 0.92 0.011

Monitoring Science & Technology Symposium - Denver, September 2004 14



Application: Lizard Abundance

• Applied the model selection strategy to the orange-throated whiptail lizard data set (Ver Hoefet al.
(2001)).

– Response variable islog(lizard abundance) at 148 highly clustered sites throughout southern
California.

– Explanatory variables include a single catergorical variable and five continuous variables for a
total of5 × 25 = 160 unique models.

• The model selected coincides with that of Ver Hoefet al.

– The selected model contains variables 1 and 4 only.

• Generated 100 simulated response data sets using the selected model and applied the spatial AICC
model selection procedure.
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Application: Sampling Pattern for the Lizard Abundance Study
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Model Selection: Simulation Results for the Lizard Abundance Data

• Independent AICC and Spatial AICC report the percentage of simulations that each model was
selected.

• Of the 160 possible models, the results given here include only those with 10% or more support
for one of the models.

Variables in Model
Spatial Independent
AICC AICC

X1,X4 75.0 5.0
X1,X4,X5,X8 1.0 10.0
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Conclusions

• We advise against ignoring spatial correlation when selecting explanatory variables.

– Model choice for prediction should involvejoint selection of the explanatory variables and the
form of the autocorrelation function.

• The model selection methodology presented here can be easily adapted for use with other
information criterion.

– Bayesian Information Criterion (BIC).

– Minimum Description Length (MDL).

• The sampling pattern can severely impact model selection (complete results not presented here).

– Simulation studies demonstrate that this selection methodology is even more successful for
lightly and heavily clustered sampling patterns.
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Additional Ongoing Work

• Model Selection: We are investigating the asymptotic behavior of AIC as a function ofinfill and
expanding domain.

• Geostatistics: We are looking at the impact of fitting (or failing to fit) a nugget parameter during
modeling.
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