Change point tests in functional factor models with application to yield curves

Piotr Kokoszka
Department of Statistics, Colorado State University

Joint work with

Lajos Horváth
University of Utah

Gabriel Young
Colorado State University

Patrick Bardsley
University of Utah
Scalar change point model

\[X_i = \mu_i + u_i, \quad 1 \leq i \leq N, \quad Eu_i = 0. \]

Null hypothesis:

\[H_0 : \mu_1 = \mu_2 = \ldots = \mu_N. \]

\(H_A \): the means change in some way: abruptly, gradually, epidemically ...

It is typically assumed that the errors \(u_i \) are homoskedastic, the series \(u_i \) is stationary.

There has been limited work for nonstationary \(u_i \): Cavaliere, Taylor, Dalla, Giraitis, Phillips ...
CUSUM approach

CUSUM process:

\[Z_N(t) = N^{-1/2} \left(\sum_{\ell=1}^{[Nt]} X_\ell - \frac{[Nt]}{N} \sum_{\ell=1}^{N} X_\ell \right) . \]

Functionals of this process are used as tests statistics.

If the \(u_i \) are iid, \(Z_N \) typically leads to optimal tests, it can be connected to the likelihood method.

There has been recent work for the \(u_i \) which are dependent and exhibit change/points or irregular trends in variability. Change points or trends in the variability of the \(u_i \) and confound change points in the mean of the \(X_i \).
Assumptions on the u_i

These are main assumptions in Górecki, Horváth, Kokoszka (preprint).
Dalla, Giraitis, Phillips (preprint) use conceptually similar assumptions.

\[u_i = u_{i,N} = a(i/N)e_i \]

$[0, 1] \ni t \mapsto a(t)$ has regular variation.

\[
N^{-1/2} \sum_{\ell=1}^{\lfloor Nt \rfloor} e_\ell \xrightarrow{\mathcal{D}[0,1]} \sigma W(t),
\]
Main result

Set

\[b(t) = \sigma^2 \int_0^t a^2(u)du. \]

Then

\[N^{-1/2} \sum_{\ell=1}^{\lceil Nt \rceil} u_\ell \overset{D[0,1]}{\to} W(b(t)). \]

Main difficulty: the function \(b(\cdot) \) is unknown.
Under H_0,

$$Z_N(t) \overset{D[0,1]}{\to} \Gamma(t), \text{ where } \Gamma(t) = W(b(t)) - tW(b(1)).$$

The covariance function

$$C(t, s) = E[\Gamma(t)\Gamma(s)] = b(t \wedge s) - tb(s) - sb(t) + tsb(1).$$

can be estimated (involves LRV’s of subsamples).

$$\int_0^1 Z_N^2(t)dt \overset{D}{\to} \int_0^1 \Gamma^2(t)dt. \overset{D}{=} \sum_{i=1}^{\infty} \lambda_i \xi_i^2.$$

Weighted functionals, e.g. Anderson–Darling, are possible.
Use the V/S statistic (Giraitis, Kokoszka, Leipus (2003)). It is a modification of the KPSS statistics (Kwiatkowski, Phillips, Schmidt, Shin (1992)).

Normalize the V/S statistic by the LRV of the whole sample. Argue theoretically and empirically that the normalized V/S statistic leads to a test which is robust to heteroskedasticity and dependence of the the u_i.

(KPSS based test does not work.)

The test of GHK attempts of estimate the pattern of heteroskedasticity; the test of DGP uses a robust statistic.
Yield curves

i - day (or month)

t$_j$ - time to maturity (1 month, 3 months, ..., 30 years)
(fractions of bonds with continuous maturities are traded.)

$X_i(t_j)$ - yield (annualized interest) of a bond bought on day i and held for time t_j.
Yield curves

US yield curves at five business days around the Lehman Brothers collapse

Crisis of 2008

Days

Sep-10 Sep-11 Sep-12 Sep-15 Sep-16

1 2 3 4 5

Yield

Piotr Kokoszka Change point in yield curves
US yield curves over $N = 100$ business days; the central time point corresponds to the Lehman Brothers collapse.
Factor models

\[X_i(t_j) = \sum_{k=1}^{K} \beta_{i,k} f_k(t_j) + \varepsilon_i(t_j). \]

The \(f_k \) are deterministic functions, treated as known in standard finance methodology.

The \(K \) time series \(\{\beta_{i,k}, \, k = 1, 2, 3, \ldots\} \) are modeled as time series (modern dynamic models).

If \(\beta_{i,k} \equiv \beta_k \), static model.
\{X_i(t_j), \; i = 1, 2, 3, \ldots \} \text{ is a multivariate time series of dimension } J = 10.

Why not model it as a VAR process?

The yield curves have a specific shape whose components have economic interpretation.

Factors lead to nontrivial and practically relevant dimension reduction and improved estimation and prediction.
Change point test in a functional factor model

\[X_i(t) = \sum_{k=1}^{K} \beta_{i,k} f_k(t) + \varepsilon_i(t), \quad 1 \leq i \leq N. \]

(Continuous time)

\[\beta_{i,k} = \mu_{i,k} + b_{i,k}, \quad Eb_{i,k} = 0. \]

\[\mu_i = [\mu_{i,1}, \mu_{i,2}, \ldots, \mu_{i,K}]^T \]

\[H_0 : \mu_1 = \mu_2 = \ldots = \mu_N. \]
Interpretation of a change point

Nelson–Siegel factors $f_1(t, \lambda), f_2(t, \lambda), f_3(t, \lambda)$.
Recall: \(H_0 \): mean structure does not change

Error functions: \(\sum_{k=1}^{K} b_{i,k} f_k(t) + \varepsilon_i(t) \).

The distribution of the error functions can change at known points:

\[1 = i_0 < i_1 < i_2 < \ldots < i_M < i_{M+1} = N. \]

(Similar to prior information in Bayesian inference)

On each segment, error functions are realizations of potentially different weakly dependent processes in \(L^2 \).

Compare:

unknown \textit{change points} in mean structure

known \textit{break points} in error structure
Determining break points

Dates of substantial central bank intervention,

Dates of events of economic impact,

Exploratory analysis of the variability of the yield curves.

After the application of the test, some change points may be close to break points.
Vectors of projections:

$$z_i = [\langle X_i, f_1 \rangle, \ldots, \langle X_i, f_K \rangle]^\top$$

Introduce the *deterministic* matrix

$$C = [\langle f_k, f_j \rangle, \ 1 \leq k, j \leq K].$$

and random vectors

$$b_i = [b_{i,1}, b_{i,2}, \ldots, b_{i,K}]^\top, \quad \epsilon_i = [\langle \epsilon_i, f_1 \rangle, \langle \epsilon_i, f_2 \rangle, \ldots, \langle \epsilon_i, f_K \rangle]^\top.$$

Then

$$z_i = C \mu_i + \gamma_i, \quad \gamma_i =Cb_i + \epsilon_i,$$

Change in the vectors μ_i is equivalent to a change in the z_i at the same change points.
CUSUM process:

\[\alpha_N(x) = N^{-1/2} \left(\sum_{i=1}^{\lceil Nx \rceil} z_i - \frac{\lceil Nx \rceil}{N} \sum_{i=1}^{N} z_i \right), \quad 0 \leq x \leq 1. \]

Even under \(H_0 \), the distribution of the \(z_i \) can change at break points.

\(\{ \gamma_i^{(m)} \} \) - model for the vector errors \(\gamma_i \) over the interval \((i_m, i_{m+1}] \).

Long–run covariance matrices:

\[V_m = \sum_{\ell=-\infty}^{\infty} \text{cov}(\gamma_i^{(m)}, \gamma_{i+\ell}^{(m)}). \]
Detection through projections onto factors

Limit distribution of the CUSUM process:

\[\alpha_N \rightarrow G^0, \quad \text{in } D^K([0, 1]), \quad G^0(x) = G(x) - xG(1). \]

\(\{G(x), \ x \in [0, 1]\} \) is a mean zero \(\mathbb{R}^K \)-valued Gaussian process with covariances

\[
E[G(x)G^\top(y)] = \sum_{j=1}^{m}(\theta_j - \theta_{j-1})V_j + (x - \theta_m)V_{m+1}, \quad \theta_m \leq x \leq \theta_{m+1}, \ y \geq x \]

The covariances of the process \(G^0 \) can be computed explicitly (a long formula).

Cramér–von–Mises functional

\[
\int_0^1 \|\alpha_N(x)\|^2 \, dx \rightarrow \int_0^1 \|G^0(x)\|^2 \, dx.
\]

We must simulate the distribution of the right-hand side.
1. Eigenvalue method (\textbf{Eigen}):

Estimate $R(x, y) = E[G^0(x)G^0(y)^\top]$. Use equality in distribution:

$$
\int_0^1 \|G^0(x)\|^2 \, dx \sim \sum_{j=1}^{\infty} \lambda_j Z_j^2.
$$

The Z_j are independent standard normal;

$$
\int_0^1 R(x, y)\phi_j(y) \, dy = \lambda_j \phi_j(x).
$$
2. Direct simulation method (\textbf{Sim}):

Generate replications of the process \(G^0 \). Enough to generate

\[
G(x) = \sum_{j=1}^{m} (\theta_j - \theta_{j-1})^{1/2} G_j(1) + (\theta_{m+1} - \theta_m)^{1/2} G_{m+1} \left(\frac{x - \theta_m}{\theta_{m+1} - \theta_m} \right),
\]

\(x \in (\theta_m, \theta_{m+1}] \).

\[
E[G_j(x) G_j(y)^\top] = \min(x, y) V_j,
\]

\(G_j(x) = L_j W(x), \quad L_j L_j^\top = V_j, \)

\(W = [W_1, W_2, \ldots, W_K]^\top, \)

\(K \) independent standard Wiener processes.
Nonparametric functional approach

Motivation: the factor model can be rewritten as

\[X_i(t) = \tau_i(t) + \eta_i(t), \quad 1 \leq i \leq N, \]

where

\[
\tau_i(t) = \sum_{k=1}^{K} \mu_{i,k} f_k(t), \quad \eta_i(t) = \sum_{k=1}^{K} b_{ik} f_k(t) + \varepsilon_i(t).
\]

The first line is a valid model without the second line. We can test

\[H_0 : \quad \tau_1 = \tau_2 = \ldots = \tau_N. \]

A version of the **Eigen** method can be derived, it has to be custom coded, one needs to solve

\[
\int \int U^0(x, y; t, s) \varphi_j(y, s) \, dy \, ds = \lambda_j \varphi_j(x, t).
\]

The 4D kernel is expressed in terms suitably defined LRV kernels.
Application to yield curves

Case (1)
Application to yield curves

Case (2)
Application to yield curves

Case (3)
Application to yield curves

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Method</th>
<th>Break Point</th>
<th>P–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/20/2008 – 03/19/2009</td>
<td>ProjSim</td>
<td>yes</td>
<td>1.5%</td>
</tr>
<tr>
<td></td>
<td>ProjEigen</td>
<td>yes</td>
<td>1.7%</td>
</tr>
<tr>
<td></td>
<td>NFEigen</td>
<td>yes</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>ProjSim</td>
<td>no</td>
<td>87.9%</td>
</tr>
<tr>
<td></td>
<td>ProjEigen</td>
<td>no</td>
<td>85.2%</td>
</tr>
<tr>
<td></td>
<td>NFEigen</td>
<td>no</td>
<td>26.2%</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/30/2005 - 06/29/2006</td>
<td>ProjSim</td>
<td>yes</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>ProjEigen</td>
<td>yes</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>NFEigen</td>
<td>yes</td>
<td>0.2%</td>
</tr>
<tr>
<td></td>
<td>ProjSim</td>
<td>no</td>
<td>56.7%</td>
</tr>
<tr>
<td></td>
<td>ProjEigen</td>
<td>no</td>
<td>50.5%</td>
</tr>
<tr>
<td></td>
<td>NFEigen</td>
<td>no</td>
<td>57.2%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/16/2012 – 02/14/2013</td>
<td>ProjSim</td>
<td>yes</td>
<td>68.1%</td>
</tr>
<tr>
<td></td>
<td>ProjEigen</td>
<td>yes</td>
<td>66.9%</td>
</tr>
<tr>
<td></td>
<td>NFEigen</td>
<td>yes</td>
<td>55.8%</td>
</tr>
<tr>
<td></td>
<td>ProjSim</td>
<td>no</td>
<td>80.4%</td>
</tr>
<tr>
<td></td>
<td>ProjEigen</td>
<td>no</td>
<td>77.7%</td>
</tr>
<tr>
<td></td>
<td>NFEigen</td>
<td>no</td>
<td>76.3%</td>
</tr>
<tr>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Based on similar data examples and simulations, we observed that

1. If a possible break point in the error structure is not taken into account in any of the testing procedures, an existing change point in the mean structure may not to be detected.
2. The tests are generally well calibrated if \(N = 500 \).
3. If \(N = 250 \), all tests have a tendency to overreject by some 2 percent.
4. If the intelligible factors (Lengwiller and Lenz (2010) are used, the empirical size of projSim test improves at the 5% nominal level, but the size of the ProjEigen test deteriorates.
5. We recommend ProjSim with intelligible factors and NFEigen.

The paper contains complete asymptotic theory and details of numerical implementation.