Syllabus
STAT 695
Competitive Predictive Modeling
Spring, 2016
(2 credits)

Description
Statistical machine learning has become the central tool for a large number of research and practical fields, such as business decision making, imaging processing, and detecting disease relevant factor, and particularly predictive modeling. A vast amount of statistical tools and models have been discussed in literature for predictive modeling from both theoretical and methodological perspectives. In this course, instead of focusing on the theoretical aspects, students will gain extensive practice in building and testing predictive models through directed participation in predictive modeling competitions, including Kaggle (https://www.kaggle.com/) and the Data Mining Cup (http://www.data-mining-cup.de/en/). Competitions will include predicting responses of mixed types. Practical utilization of statistical learning tools will be discussed along with the competition. In addition, students will gain extensive practice in using R software for data wrangling and modeling.

Prerequisites
Experience coding in R; at least one regression course such as STAT 511; permission of the instructors.

Instructors
Professor Brooke Anderson, brooke.anderson@colostate.edu
Office: 146 Environmental Health Building
Office hours: By appointment

Professor Wen Zhou, riczw@colostate.edu,
http://www.stat.colostate.edu/~riczw/
Office: 208 Statistics Building
Office hours: By appointment

Meetings
Monday, Wednesday, Friday, 45 minutes M/W and 30 minutes F, Time and Location TBA

Textbooks
Required:

Recommended:
Course Objectives
The primary aim of this course is to use three in-depth, practical examples of predictive-modeling challenges (two Kaggle competitions and the Data Mining Cup) to allow students to gain extensive practical experience in data processing, data matrix construction, variable selection, model fitting, model ensemble, and evaluating predictive models. With that aim, this course will introduce students to a variety of topics in machine learning to provide them with strategies and approaches to tackle these specific applied examples. Some of the challenges that will come up will be specific to these three problems, but this experience of completing three predictive modeling competitions will provide students with the conceptual understanding, programming tools, and strategies to tackle their own predictive modeling challenges. This course would also provide an excellent background for students aiming to take more theoretical courses on statistical learning in the future.

Specific objectives include:

(1) Students will work in multi-disciplinary teams to compete in the two Kaggle predictive modeling competitions.
(2) Students will learn how to fit and evaluate a variety of predictive models, including: classification and regression trees, support vector machines, logistic and linear regression models, tree ensemble models, Naive Bayes, k-nearest neighbors, and neural networks.
(3) Students will learn strategies in data wrangling and feature engineering to improve predictive models.
(4) Students will learn to use resampling methods to assess the performance of predictive models.
(5) Students will gain extensive additional experience working on complex modeling problems using R statistical software.
(6) Students will be recommended to form a team to participate in the annual Data Mining Cup held from April to May. The final result will be released on July 2016, and the top 10 teams will be invited to Berlin, Germany, for the final ceremony; more details see http://www.data-mining-cup.de/en/, http://magazine.amstat.org/blog/2013/10/01/iowa-state-dmc/.

Course Topics
- Definition of machine learning.
- Classification models: K-nearest neighbors, naive Bayes, logistic regression, classification trees, bagging, random forests, boosting, support vector machines.
- Regression models: K-nearest neighbors, naive Bayes, linear regression, regression trees and tree ensembles, non-linear regression, support vector machines, ridge regression, lasso.
- Model fitting and tuning.
- Model evaluation, including with re-sampling techniques.
- Data pre-processing, feature selection, measuring variable importance, and visualizing data.
- Linear model selection and regularization and the challenges of high-dimensional data.
- Neural networks and deep learning.
- Unsupervised learning.

Course Expectations & Grading
Grades will be based on attendance, participation, regular submission of model results to each of the two Kaggle competitions, written reports on each challenge (one per group), in-class presentations on final
models for each Kaggle challenge and the DMC, and student presentations on topics from Kuhn and Johnson (2013).

Assignments & Readings

- **Week 1**: What is machine learning? Classification models: K-nearest neighbors and naive Bayes.
 Reading: James et al.: Chs. 2, 4.1-2, 4.4. Kuhn and Johnson Chs. 1, 2, 13.5-6.
 Competition: Kaggle: Surviving the Titanic

- **Week 2**: Metrics of performance of classification models. Classification models: logistic regression models and classification trees.
 Competition: Kaggle: Surviving the Titanic

- **Week 3**: Using resampling to measure performance of classification models. Classification models: ensemble models (bagging, random forest, boosting).
 Reading: James et al.: Chs. 5, 8.2. Kuhn and Johnson: Ch. 14.3-7.
 Competition: Kaggle: Surviving the Titanic

- **Week 4**: Classification models: support vector machines.
 Reading: James et al.: Ch. 9
 Competition: Kaggle: Surviving the Titanic
 Graded products: Students present final predictive model for Titanic competition.

- **Week 5**: Student presentations based on Kuhn and Johnson 2013: Data pre-processing; Over-fitting and model tuning; Remedies for severe class imbalance; Feature selection
 Reading: Kuhn and Johnson: Chs. 3, 4, 16, 19
 Competition: Kaggle: Surviving the Titanic
 Graded products: Students presentations on material from chapters in Kuhn and Johnson 2013.

 Reading: James et al.: Ch. 3. Kuhn and Johnson: Chs. 4 (re-visited), 5, 6.1-2.
 Competition: Kaggle: Current competition with continuous outcome

- **Week 7**: Linear model selection and regularization. Shrinkage methods and dimension reduction methods.
 Reading: James et al.: Ch. 6.
 Competition: Kaggle: Current competition with continuous outcome

- **Week 8**: Regression models: Non-linear regression models, regression trees. Measuring predictor importance.
 Reading: James et al.: Ch. 7. Kuhn and Johnson: Chs. 7 and 8.
 Competition: Kaggle: Current competition with continuous outcome

- **Week 9**: Regression models: Regression trees. Feature selection / engineering re-vistied.
 Reading: James et al.: Ch. 8 (re-visited). Kuhn and Johnson: Chs. 3 and 19 (re-visited).
 Competition: Kaggle: Current competition with continuous outcome

- **Week 10**: Student team presentations on final model for current Kaggle competition.
 Reading: Background information on this year’s Data Mining Cup
 Competition: Kaggle: Current competition with continuous outcome
 Graded products: Students present final predictive model for current Kaggle competition.

- **Week 11**: Factors that can affect model performance. Case study: Grant application models.
 Reading: Kuhn and Johnson: Chs. 15, 20.
 Competition: This year’s Data Mining Cup competition.

- **Week 12**: High-dimensional data (re-visited). Case study: Concrete Mixture Strength models.
 Reading: James et al.: Ch. 6 (re-visited). Kuhn and Johnson: Ch. 10.
 Competition: This year’s Data Mining Cup competition.
• **Week 13**: Neural networks. Deep learning methods.
 Reading: Kuhn and Johnson: Ch. 13.2.
 Competition: This year’s Data Mining Cup competition.

• **Week 14**: Visualization. Unsupervised learning.
 Reading: James et al.: Ch 10.
 Competition: This year’s Data Mining Cup competition.

• **Week 15**: Student team presentations on final model for this year’s DMC competition.
 Competition: This year’s Data Mining Cup competition.

Graded products: Students present final predictive model for DMC.