Assumptions (A) for Multiple Linear Regression

Notation The \((k + 1)\)-variable population \(\{Y, X_1, \ldots, X_k\}\) is the study population.

(Population) Assumption 1 The mean \(\mu_Y(x_1, \ldots, x_k)\) of the subpopulation of \(Y\) values with \(X_i = x_{i1}, \ldots, X_k = x_{ik}\) is

\[
\mu_Y(x_1, \ldots, x_k) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k
\]

where \(\beta_0, \beta_1, \ldots, \beta_k\) are unknown parameters and \(x_1, \ldots, x_k\) belong to the set of allowable values (sometimes called the *domain*) of the predictor variables.

(Population) Assumption 2 The standard deviation of the \(Y\) values in the subpopulations with \(X_i = x_{i1}, \ldots, X_k = x_{ik}\) does not depend on the values \(x_1, \ldots, x_k\) (i.e., the standard deviations are the same for each subpopulation determined by specified values of the predictor variables \(X_1, \ldots, X_k\)). This common standard deviation of all the subpopulations is denoted by \(\sigma_{Y|X_1, \ldots, X_k}\). When there is no possibility of confusion, we use the simpler notation \(\sigma\) instead of the more complete notation \(\sigma_{Y|X_1, \ldots, X_k}\).

(Population) Assumption 3 Each subpopulation of \(Y\) values, determined by specified values of \(X_1, \ldots, X_k\) is a Gaussian population.

(Sample) Assumption 4 The sample data are obtained by simple random sampling or by sampling with preselected values of \(X_1, \ldots, X_k\), discussed in Section 2.3. The number of items in the sample is \(n\).

(Sample) Assumption 5 All sample values \(y_i, x_{i1}, \ldots, x_{ik}\) for \(i = 1, \ldots, n\) are observed without error (but read Section 3.10).
Assumptions (B) for Multiple Linear Regression

(Population) Assumption 1 The study population \(\{(Y, X_1, \ldots, X_k)\} \) is a \((k + 1)\)-variable Gaussian population.

(Sample) Assumption 2 The sample data are obtained by simple random sampling described in Section 2.3; i.e., a simple random sample of \(n \) items is selected from the population and the values of the variables \(Y, X_1, \ldots, X_k \) are observed.

(Sample) Assumption 3 The sample values \(y_i, x_{i1}, \ldots, x_{ik} \) for \(i = 1, \ldots, n \) are measured without error.

Simple Random Sampling

Sample data are obtained by selecting a simple random sample of \(n \) items from the entire population of \(N \) items and recording the values for the response variable \(Y \) and the predictor variables \(X_1, \ldots, X_k \), for each item in the sample. Refer to Section 1.6.

Random Sampling with Preselected \(X \) values

Specific values of the predictor variables \(X_1, \ldots, X_k \) are preselected by the investigator, and each of these preselected sets of values determines a subpopulation of \(Y \) values. A simple random sample of one or more \(Y \) values is selected from each of these subpopulations. The number of observations to be sampled from each subpopulation is also predetermined by the investigator.
Regression Analysis: Concepts and Applications