Discriminant Adaptive Nearest Neighbor Classification (DANN)

Soo-Young Kim

November 10, 2015
Motivating example

Figure: The points are uniform in the cube, with the vertical line separating class red and green. The vertical strip denotes the 5-nearest-neighbor region using only the horizontal coordinate to find the nearest-neighbors for the target point (solid dot). The sphere shows the 5-nearest-neighbor region using both coordinates, and we see in this case it has extended into the class-red region (and is dominated by the wrong class in this instance).(ESL)
K-nearest Neighbor method has problems in high dimensional data set

Discriminant Adaptive Nearest Neighbor Classification (DANN)

- DANN uses local linear discriminant analysis to estimate an effective metric for computing neighborhoods
- DANN utilizes a small tuning parameter to shrink or stretch neighborhoods (The neighborhoods stretch out in directions for which the class probabilities don’t change much.)
Consider a discrimination problem with

- N training observations from J classes
- Training data: $\mathbf{x} = (x_1, \cdots, x_p)$ and known class memberships
- Test point: \mathbf{x}_0
- \mathbf{B} and \mathbf{W}: the $p \times p$ between and within sum-of-squares matrices
- Σ: a local metric

Goal: Predict the class membership of an observation with predictor vector \mathbf{x}_0 as the most frequent class among the K neighbors
Setup

Tuning parameter

- K_M: the number of nearest neighbors in the neighborhood N_{K_M} for estimation of the metric (ex: $K_M = \max(N/5, 50)$)

- K: The number of neighbors in the final nearest neighbor rule (Note: larger K reduces variance/ small K reduces bias)

- ϵ: the ”softening” parameter in the metric
Method

- Discriminant Adaptive Nearest Neighbor Classifier:

0) Initialize the metric $\Sigma = I$

1) Spread out a nearest neighborhood of K_M points around the test point x_0, in the metric Σ.

2) Calculate the weighted W and B using the points in the neighborhood

3) Define a new metric $\Sigma = W^{-1/2}[W^{-1/2}BW^{-1/2} + \epsilon I]W^{-1/2}$

4) Iterate steps 1, 2, and 3

5) At completion, use the metric Σ for K-nearest neighbor classification at the test point x_0

- DANN metric: $D(x, x_0) = (x - x_0)'\Sigma(x - x_0)$.
Details of the implementation

- A weight function at \mathbf{x}_0

 \[w_i = k(\mathbf{x}_i, \mathbf{x}_0; \Sigma, h) = \phi_h(||\Sigma_0^{1/2}(\mathbf{x} - \mathbf{x}_0)||) \]

 where ϕ_h is a symmetric function depending on a parameter h

- To determine metric $\Sigma = W^{-1/2}[W^{-1/2}B W^{-1/2} + \epsilon I]W^{-1/2}$:

 \[B(\mathbf{x}_0; \Sigma_0, h) = \sum_{j=1}^J \hat{\pi}_j (\bar{x}_j - \bar{x})(\bar{x}_j - \bar{x})^T, \]

 where $\hat{\pi}_j = \frac{\sum_{y_i=j} w_i}{\sum_{i=1}^N w_i}$

 \[W(\mathbf{x}_0; \Sigma_0, h) = \sum_{j=1}^J \sum_{y_i=j} w_i (\mathbf{x}_i - \bar{x}_j)(\mathbf{x}_i - \bar{x}_j)^T / \sum_{i=1}^N w_i \]
Example of DANN metric

Figure: Neighborhoods found by the DANN procedure, at various query points (centers of the crosses). There are two classes in the data, with one class surrounding the other. 50 nearest-neighbors were used to estimate the local metrics. Shown are the resulting metrics used to form 15-nearest-neighborhoods. (ESL)
In the pure regions with only one class, the neighborhoods remain circular. ($B = 0$ and $\Sigma = I$)

The ϵ parameter rounds the neighborhood, from an infinite strip to an ellipsoid, to avoid using points far away from x_0.

When $\epsilon = 0$, the metric approximately behaves like LDA metric.

In practice, it is more effective to estimate only the diagonal elements of W, and off-diagonal elements are zero. (There might be insufficient data locally to estimate the $O(p^2)$ elements)