ST640: Homework 1
Due: January 27, beginning of class

1. Let \(A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix} \).

 (a) Show that \(A \) is positive definite.

 (b) Determine the eigenvalues and eigenvectors of \(A \).

 (c) Let \(p_i \) be the \(i \)th eigenvector of \(A \), \(i = 1, 2 \). Show that \(p_i p_i^T \) is a symmetric, idempotent matrix with rank 1, \(i = 1, 2 \).

 (d) Find \(A \otimes B \) where \(B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \).

2. Prove: the eigenvalues of a positive semi-definite matrix are nonnegative.

3. Prove: if \(A \) is positive semi-definite then \(\text{tr}(A) \geq 0 \).

4. Suppose \(A_{m \times n} = \begin{pmatrix} B_{r \times r} & C \\ D & E \end{pmatrix} \) with \(\text{rank}(A) = \text{rank}(B) = r \). Then prove that the matrix \(G_{n \times m} = \begin{pmatrix} B^{-1} & 0 \\ 0 & 0 \end{pmatrix} \) is a generalized inverse of \(A \). Hint: you might want to consider the nonsingular \(m \times m \) matrix \(H = \begin{pmatrix} B^{-1} & 0 \\ DB^{-1} & -I_{m-r} \end{pmatrix} \).

5. For arbitrary random vectors, prove that \(\text{Cov}(x, y) = E xy^T - E x E y^T \).

6. Let \(\underline{x} \) be a random \(n \)-vector, and let \(y_i = x_1, y_i = x_i - x_{i-1} \) (\(i = 2, \ldots, n \)). If \(\text{Var}(y) = I \) and the \(y_i \) are mutually independent, find \(\text{Var}(\underline{x}) \).

7. Verify the first two moments of \(\chi^2_{n, \lambda} \) using the moment generating function.