Conditional Probability

the prob. of event A occurring given that event B has already occurred
denoted $P(A|B)$

Example

ask 10 people their age and gender

$A =$ person is female
$B =$ in twenties
$C =$ in thirties

What proportion of the circle contains A?

What is the probability the person is female, if we know in their twenties?

$$P(A|B) = \frac{2}{6} = \frac{1}{3}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{2}{10}$$

$$= \frac{2 \cdot 10}{10} = \frac{2}{6}$$

$$= \frac{1}{3}$$
Independence

def: events \(A \) and \(B \) are said to be independent if the occurrence of event \(A \) has no effect on the probability of event \(B \) occurring (and vice versa).

So... if \(A \) and \(B \) are independent (written \(A \perp B \)) then,

\[
P(A|B) = P(A) \quad \text{and} \quad P(B|A) = P(B)
\]

example 1: Fair coin toss

2 events: \(T \) or \(H \)

Toss coin once

\[
P(T|H) = _? \quad P(T) = \frac{1}{2}
\]

\[
= 0 \quad \Rightarrow \quad P(T|H) \neq P(T) \quad \text{not independent!}
\]

example 2:

\[
\begin{array}{c}
\text{A} = \text{girl} \\
\text{B} = \text{20's} \\
\text{C} = \text{30's}
\end{array}
\]

Are \(A \) and \(C \) independent?

\[
P(A|C) = 0
\]

\[
P(A) = \frac{3}{10}
\]

\[
P(A|C) \neq P(A) \Rightarrow \text{not independent!}
\]

\[
P(B|C) = P(B)
\]
5) The multiplication rule

\[P(A \cap B) = P(A|B) \cdot P(B) \]

by the earlier fact \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

so... this tells us that

if A and B are independent

then \(P(A \cap B) = P(A) \cdot P(B) \)

yesterday’s example • toss a fair coin twice

\[P(\text{two heads}) = P(\text{H on 1st toss}) \cdot P(\text{H on 2nd toss}) \]

\[= \frac{1}{2} \cdot \frac{1}{2} \]

\[= \frac{1}{4} \]

• def: \)

events A and B are disjoint if \(P(A \cap B) = 0 \),

ie A and B can not occur at the same time
Example: Medical Testing (pg 87)

Positive and Negative test results

8% of some population has a disease

If a person has a disease, 95% chance of positive
If a person does not have, 90% chance of negative

\[
\begin{align*}
\text{True } + & = (0.08)(0.95) = 0.076 \\
\text{False } - & = (0.08)(0.05) = 0.004 \\
\text{False } + & = (0.92)(0.1) = 0.092 \\
\text{True } - & = (0.92)(0.9) = 0.828
\end{align*}
\]

\[
P(\text{test positive}) = 0.076 + 0.092 = 0.168
\]

If someone tests positive, what is the chance that the person really has the disease?

\[
P(\text{have disease} | \text{test positive}) = \frac{P(\text{have disease} \land \text{test positive})}{P(\text{test positive})} = \frac{0.076}{0.168} \approx 0.452
\]
Random Variables

- **def**: a **random variable** is a variable that takes on a value that depends on the outcome of a chance observation.

Ex. toss a coin

say \(X = \) the face that shows up

\[= \{ H, T \} \]