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Summary

1. Advancements in wildlife telemetry techniques have made it possible to collect large data sets of highly accu-

rate animal locations at a fine temporal resolution. These data sets have prompted the development of a number

of statistical methodologies formodelling animal movement.

2. Telemetry data sets are often collected for purposes other than fine-scale movement analysis. These data sets

may differ substantially from those that are collected with technologies suitable for fine-scale movement mod-

elling and may consist of locations that are irregular in time, are temporally coarse or have large measurement

error. These data sets are time-consuming and costly to collect but may still provide valuable information about

movement behaviour.

3. We developed a Bayesian movement model that accounts for error from multiple data sources as well as

movement behaviour at different temporal scales. The Bayesian framework allows us to calculate derived quanti-

ties that describe temporally varyingmovement behaviour, such as residence time, speed and persistence in direc-

tion. Themodel is flexible, easy to implement and computationally efficient.

4. We apply this model to data from Colorado Canada lynx (Lynx canadensis) and use derived quantities to

identify changes inmovement behaviour.

Key-words: Argos, Bayesian model, Canada lynx, functional data analysis, movement modelling,

splines, telemetry

Introduction

Data sets consisting of animal locations are often collected for

purposes other thanmovement analysis (e.g., survival analysis,

demographic studies; White & Shenk 2001; Winterstein, Pol-

lock & Bunck 2001) or with technology that prohibits long-

term fine-scale movement modelling (Yasuda & Arai 2005).

For example, radiotelemetry may be used to estimate survival

(Cowen & Schwarz 2005), but the locations may not be used in

the analysis (e.g., Buderman et al. 2014; Hightower, Jackson

& Pollock 2001). These data sets are costly and time-consum-

ing to collect, but often contain a wealth of unused spatial

information. The ability to spatially characterize movement

behaviours using data sets that are insufficient for fine-scale

movement modelling may help management and conservation

agencies identify critical areas for wildlife movement (Berger

2004). In addition, with appropriate temporal data, researchers

can also better understand mechanisms that regulate move-

ment behaviour (Hays et al. 2014; Scott,Marsh&Hays 2014).

Runge et al. (2014) divide long-distance movements into

four categories: irruption (dispersal), migration, nomadism

and intergenerational relays (which we do not address). Such

movement behaviour can vary among individuals and over an

individual’s lifetime, though some species may be more

inclined to exhibit one kind of long-distance movement beha-

viour (LDMB) over another (Jonz�en et al. 2011; Mueller et al.

2011; Singh et al. 2012). For most organisms, the causes and

costs of dispersal will vary by individual and in space and time

(Bowler & Benton 2005), resulting in a continuum of move-

ment behaviours (Jonz�en et al. 2011). LDMB may contribute

substantially to population dynamics because it is the main

determinant of population spread and colonization rates

(Greenwood & Harvey 1982; Shigesada & Kawasaki 2002).

Thus, LDMB is an important life-history trait for many pro-

cesses such as species invasions, range shifts and local extinc-

tions, reintroduction programmes, metapopulation dynamics,

connectivity and gene flow (Trakhtenbrot et al. 2005).

The spatial location of these behaviours could inform con-

servation efforts for species capable of long-distance move-

ments, as some behaviours may be more important than

others for population persistence (Runge et al. 2014). In*Corresponding author. E-mail: franny.buderman@colostate.edu
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addition, comparing contemporarymovement data with prop-

erly analysed historical data may identify changes in move-

ment behaviour resulting from natural and anthropogenic

disturbances. Changes in migratory behaviour could have

wide-ranging consequences in cases where the species con-

tributes significantly to the biological assemblage (Robinson

et al. 2009). Species are usually limited in their range by disper-

sal ability, foraging ecology or available habitat (Hays & Scott

2013; Wood & Pullin 2002), and as habitat fragmentation and

climate variability increase, the ability of species to traverse

long distance will become critical (Bowler & Benton 2005).

Species that have the capability for long-distance movement

may be able to track habitat as environmental conditions

change. However, individuals usually depend on a network of

suitable habitats for different behaviours (e.g., breeding or

migration; Robinson et al. 2009). Long-term survival of the

species can be reduced when the distance between patches

exceeds dispersal ability (Trakhtenbrot et al. 2005), or when

suitable habitat is not available for all of the behaviours that

occur during an annual cycle (Robinson et al. 2009).

Although dispersal, migration and nomadism are all

LDMBs, they may differ in characteristics that can be quanti-

tatively measured, such as residence time, speed and persis-

tence in direction (described using the turning angle). For

example, areas where individuals are foraging ormaintaining a

home range may be identified by longer residence times or

slower speeds (Schofield et al. 2013) and undirected motion

(Morales et al. 2004). In contrast, movement may be faster

(Dickson, Jenness & Beier 2005) and more directed (Haddad

1999) within corridors. Nomadic individuals may exhibit simi-

lar speeds as migrators and dispersers, but they would appear

to be perpetually dispersing, with no consistent activity centre

and a turning angle independent of previous movements

(Lidicker & Stenseth 1992). Dispersal and migration may have

similar speed and directional characteristics, but migration is a

seasonally repeated movement between the same areas (Berger

2004) by individuals within a population (Sawyer, Lindzey &

McWhirter 2005), whereas dispersal is a one-way movement

(Lidicker & Stenseth 1992).

Movement behaviour is typically monitored using very high

frequency (VHF) or satellite telemetry devices. These monitor-

ing devices are more effective at detecting LDMB than plot-

based studies, which may underestimate long-distance move-

ment (Koenig et al. 1996). The frequency of VHFdata is deter-

mined by how often an individual can be located and are

spatially restricted to the actively searched area. Aerial location

accuracy associated with VHF data may be affected by

antenna type, altitude and observer skill, while ground triangu-

lation accuracy may be additionally impacted by terrain, vege-

tation, power lines, and weather (Mech 1983). In contrast, the

intended fix rate for a satellite telemetry device is prepro-

grammed and often regularly spaced in time. Fix success rates

and accuracy can be influenced by animal behaviour, such as

diving behaviour, canopy cover, terrain and climatic condi-

tions (e.g., Di Orio, Callas & Schaefer 2003; Dujon, Lindstrom

& Hays 2014; Heard, Ciarniello & Seip 2008; Mattisson et al.

2010). The device’s satellite system (GPS or Argos Satellite

maintained by Service Argos) can also influence accuracy of

the location observations (Costa et al. 2010;Dujon, Lindstrom

& Hays 2014; Heard, Ciarniello & Seip 2008; Patterson et al.

2010; Vincent et al. 2002). In addition, fix success rate, battery

life and accuracy may all depend on transmitter manufacturer

and model. Both VHF and satellite components can be placed

into the same device or individuals can be outfitted with two

separate devices, resulting in data sets consisting of multiple

data types.

Movementmodelling often seeks to spatially characterize an

individual’s location as a function of time; however, this func-

tion may be highly complex and non-stationary. In addition,

measurement error varies amongmonitoring methods and can

be large enough to overwhelm small-scale movement patterns

(Breed et al. 2011; Kuhn et al. 2009). Coupled with temporal

irregularity and missing data, these attributes may prohibit the

use of contemporary movement models. We have found that

many available methods do not readily accommodate multiple

sources of data and must impute missing data to obtain loca-

tions at regular intervals (e.g., Hanks et al. 2011; Hanks, Hoo-

ten &Alldredge 2015; Hooten et al. 2010; Johnson, London &

Kuhn 2011). For example, the continuous-time correlated ran-

dom walk model presented by Johnson et al. (2008) only

accounts for elliptical error distributions. Breed et al. (2012)

incorporated an augmented particle smoother into a CRW

process model to allow for time-varying parameters; however,

their method does not account for multiple data sources and

its effectiveness was only demonstrated on highly accurate

GPS data at a fine temporal scale (10–30 locations day�1).

Winship et al. (2012) incorporated multiple data sources (Ar-

gos, GPS and geolocation data) into a state-space model, but

the method performed poorly when there were data gaps,

relied heavily on the estimates of Argos precision presented in

Jonsen, Flemming & Myers (2005) and treated the GPS data

as equivalent to the best Argos location class. Change-point

models require specifying or estimating the number of change

points, and the change points are discrete in time (Gurarie,

Andrews & Laidre 2009; Hanks et al. 2011; Jonsen, Flemming

& Myers 2005; Jonsen, Myers & James 2007); modelling

smooth transitions in the change-point framework is more dif-

ficult. Given that one individual may exhibit many different

LDMBs, we seek a model that is flexible enough to detect dif-

ferent types and degrees ofmovement behaviour, without spec-

ifying or estimating the number of change points. Brownian

bridge movement models, a method commonly used with

high-resolution telemetry data, have been shown to work well

only when the measurement error is negligible (Pozdnyakov

et al. 2014), making them unsuitable for data sets obtained

with VHF or Argos technology, which can be subject to sub-

stantial error. Recent applications of wavelet analyses also do

not account for location error or uncertainty in the change-

point identification and are not feasible with sparse and irregu-

lar data sets (Lavielle 1999; Sur et al. 2014).

Basis functions are a useful set of tools for approximating

continuous functions, such as movement paths, when ordinary

polynomials are inadequate to describe the behaviour of the

function (Rice 1969). Commonly used basis functions include
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wavelets, Fourier series and splines. Approximating a function

with splines is computationally easy because the function is just

a weighted sum of simpler functions (Wold 1974), and such

tools have been incorporated into standard statistical software.

Wold (1974) recognized that splines may be most useful in low

information settings where the ultimate goal is to compare

individual estimates of a few characteristic parameters that

describe the curve. Basis functions have been used extensively

in fields such as physics (e.g., Sapirstein& Johnson 1996), med-

icine (e.g., Gray 1992) and medical imaging (e.g., Carr, Fright

& Beatson 1997), and climate science (e.g., S�aenz-Romero

et al. 2010). However, basis functions and associated statistical

methods are less commonly used in ecology.Most applications

focus on modelling species distributions (e.g., Lawler et al.

2006; Leathwick et al. 2005) and population dynamics (e.g.,

Bjørnstad et al. 1999), though splines have broad applicability

in generalized additive models (Hastie & Tibshirani 1990;

Wood & Augustin 2002). For example, Hanks, Hooten & All-

dredge (2015) used B-splines to model spatial transition rates

as a function of location and direction-based covariates and

time-varying coefficients. In addition, recent efforts have used

B-splines to estimate density functions associated with move-

ment-related behavioural states (Langrock et al. 2014). Trem-

blay et al. (2006) used Bezier, hermite and cubic splines as

strict interpolators of irregular telemetry data from ocean-obli-

gate species; however, they assumed the filtered Argos loca-

tions were the true locations. There is also precedent in the

statistical literature for the equivalence between stochastic

movement processes, such as theWiener process, and smooth-

ing polynomial splines (Wahba 1978;Wecker &Ansley 1983).

We describe a functional approach to movement modelling

using basis functions within a Bayesian model that accounts

for multiple data types and their associated error, recognizing

that the observed locations are not the true location. The basis

functions allow us to account for temporal variation in the

continuous underlying movement path without specifying

movement mechanisms. We then use derived quantities, such

as residence time, speed and persistence in direction, to charac-

terize movement behaviour. In addition, the model is multi-

scale, allowing for movement behaviour at multiple

biologically relevant temporal scales. We use this model to

describe how reintroduced Canada lynx (Lynx canadensis)

moved throughout Colorado. The two data collection meth-

ods, along with their measurement error and the sampling

irregularity, make this an ideal data set to demonstrate the

utility of ourmodel.

Methods

Conventional functional data analysis (FDA) assumes that there is a

continuous underlying process, but the observations are temporally dis-

crete, may be subject to error and are temporally irregular (Ramsay &

Dalzell 1991; Ramsay & Silverman 2002; Ramsay & Silverman 2005).

Unlike traditional time series analysis, FDAdoes not assume stationar-

ity or regularity of time intervals (Levitin et al. 2007). The continuous

function of interest is approximated using basis functions, which are a

set of patterns that capture themain shape of the curve (Ferraty &Vieu

2006; Hastie, Tibshirani & Friedman 2009; Ramsay & Silverman

2005). In our case, different sets of basis functions account for complex-

ity in the process at different temporal scales, allowing us to detect both

large- and small-scale movement. In addition, FDA is useful when the

objectives of an analysis are to estimate the derivatives of a function

(Levitin et al. 2007; Ramsay & Dalzell 1991). In our framework, func-

tions of temporal derivatives, such as residence time, speed and persis-

tence in direction, are derived quantities that can characterize the

movement path. The Bayesian framework allows for inference con-

cerning these derived quantities and their associated uncertainty while

incorporating multiple data sources; for our purposes, we incorporated

VHF andArgos data into a singlemodel.

DATA MODEL

We consider each observed (centred and scaled) location, sjðtÞ for a

time t 2 T associated with data type j (j = 1,...,6 are Argos error classes

and j = 7 denotes VHF), to arise from a multivariate normal mixture

model with mean, z(t), representing the true location at time t and a

covariancematrixRj such that

sjðtÞ�
NðzðtÞ;RjÞ; if wjðtÞ ¼ 1

NðzðtÞ; ~RjÞ; if wjðtÞ ¼ 0

�
eqn 1

The covariance matrix, Rj � r2
j Rj, represents the error variance asso-

ciated with each data typewhere the correlationmatrix is

R � 1
ffiffiffi
c

p
qffiffiffi

c
p

q c

� �
eqn 2

for j = 1,...,6 andR� I for j = 7. The prior distribution for the measure-

ment error variance, r2
j , was modelled as an inverse gamma, IG(q,r),

where q is the shape parameter and r is the rate parameter. Argos error

for all error classes has been shown to be larger than reported byArgos

and greater in the longitudinal direction (Boyd & Brightsmith 2013;

Costa et al. 2010; Hoenner et al. 2012); therefore, we use the parameter

c, where c�Betaðac;bcÞ, to scale the error variance to be less in latitude
than longitude. The q parameter scales the degree of covariance

between latitude and longitude and ismodelled as Betaðaq;bqÞ.
The indicator wjðtÞ determines which mixture component gives rise

to the observed location and is modelled as Bern(0�5). The covariance
matrix of the rotated distribution, ~Rj, is calculated asHjRjH

0
j whereHj

is a transformationmatrix equal to

H � 1 0
0 �1

� �
eqn 3

for j = 1,. . .,6, and H � I (the identity matrix) for j = 7. The mixture

model accounts for the fact that Argos error locations do not follow a

symmetric distribution around the true location, but are more likely to

be found in andX-pattern, due to the polar orbit of the satellites (Costa

et al. 2010; Douglas et al. 2012). In preliminary analyses not presented

here, the multivariate normal mixture model fit the data better than a

multivariate normal non-mixture model. Argos locations are com-

monly modelled with a t-distribution to account for extreme outliers

(following Jonsen, Flemming & Myers 2005), however, the mixture

model allows us to model anisotropic outliers. Though the aforemen-

tioned studies havemodelled or estimatedArgos error, the information

is not directly applicable in the form of priors because the mixture

model is a novel method for modelling Argos error and there is signifi-

cant variability in reported estimates of Argos error (Costa et al. 2010).

Beginning in 2011, theArgos system implemented a new algorithm that

provides an error ellipse, as opposed to a radius, for each location

(Lopez et al. 2014). Recent work byMcClintock et al. 2014b) used the
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ellipse parameters provided by theArgos systemand a bivariate normal

distribution tomodel the data.

PROCESS MODEL

In the FDA paradigm, a continuous process for a set of times t ðt 2 T Þ
is written as an expansion ofM basis functions of order k:

zðtÞ ¼
XM
m¼1

cm/m;kðtÞ eqn 4

where z(t) is the curve of interest, cm is a coefficient that determines the

weight of each basis function in the construction of the curve, and

/mðtÞ is a particular basis function (Levitin et al. 2007). The type of

pattern present in the data dictates the best choice of basis function; for

example, splines are often used for non-periodic data, Fourier series for

periodic data, and wavelet bases for data with sharp localized patterns.

We employed the B-spline basis, which is commonly used in semipara-

metric regression, because it has local support and stable numerical

properties when the number of knots (the points at which the basis

functions connect) is large (Keele 2008; Ruppert, Wand & Carroll

2003). However, the model we present is general enough to accommo-

date any type of basis functions. B-spline basis functions are defined

recursively according to the Cox-de Boor formula (see De Boor 1978).

Let xm;k denote the mth B-spline basis function of order k (cubic

B-splines are 4th order and 3rd degree) for the knot sequence s, where
k≤K. Then form =1,...,N + 2K� k,

xm;kðtÞ ¼
t� sm

smþk�1� tm
Bm;k�1ðtÞþ

smþk � t

smþk � smþ1
Bmþ1; k�1ðtÞ; eqn 5

where N is the number of interior knots (Hastie, Tibshirani & Fried-

man 2009).

In the spatial statistics and signal processing framework, a continu-

ous stochastic process is often written as a convolution, or a moving

average, of a smoothing kernel function, k(s�t) and a latent process

(e.g., white noise),g(s):

zðtÞ ¼
Z
T
kðs� tÞgðsÞds eqn 6

for s 2 T (Calder 2007; Higdon 2002; Lee et al. 2002). When dis-

cretized, (6) takes on a general formulation (4) (Calder 2007; Higdon

2002; Lee et al. 2002). Non-stationary processes can be modelled by

allowing the kernel to be a function of time (or space) and not just dis-

tance (Cressie & Wikle 2011; Higdon 2002; Higdon, Swall & Kern

1999). In the context of animal movement, one can consider the

smoothing kernel as some function that imposes temporal dependence

on the observed locations (the latent process) to create a continuous

and smoothmovement path.

In our case, the location of an individual at time t in each direction, z

(t), is a function of an individual’s geographic mean in that direction,

b0 and the summation ofM cubic B-splines evaluated at time t, xm;4ðtÞ,
and the regularized, direction-specific coefficient, bm, for that B-spline.
The location in longitude and latitude is

zlonðtÞ ¼ b0lon þ
XM
m¼1

xm;4ðtÞbmlon
eqn 7

zlatðtÞ ¼ b0lat þ
XM
m¼1

xm;4ðtÞbmlat
eqn 8

Usingmatrix notation, we canwrite (7) and (8) jointly as

zðtÞ ¼ b0 þ XðtÞb eqn 9

where z(t) is a vector describing the location in space at time t. The

matrix X(t) is a 2-by-2Mmatrix where xðtÞ0 is a row vector containing

all of the B-splines evaluated at time t, such that

XðtÞ � xðtÞ0 00

00 xðtÞ0
� �

eqn 10

As such, it can be multiplied by a single 2M-by-1 vector of regularized

coefficients

b � blon
blon

� �
eqn 11

The regularized coefficients for higher-order splines are not generally

interpreted (Weisberg 2014), but can be thought of as the contribution,

or the directional forcing, of that basis function to the process at that

time. The intercept, b0, can be interpreted as the geographic centre of

mass for each individual, for which we specified a relatively uninforma-

tive 2-dimensional normal prior (Appendix S1). We specified a normal

prior with mean 0 and covariance matrix Rb for the coefficients such

that

b�Nð0;RbÞ eqn 12

We selected three sets of B-splines and varied the number of knots to

alignwith temporal scales we believe are biologically important for lynx

movement: year, season (3 months) andmonth. Includingmultiple sets

of basis functions allows the continuous function to capture behaviour

at different temporal scales without losing predictive capability when

there is an absence of fine-scale temporal data. However, the required

number of knots results in a large design matrix of coefficients that is

difficult to visualize; for example, there were 36 and 41 basis functions

for the two Canada lynx presented in the case study. The number of

basis functions will increase as the length of the time series increases.

We used the covariancematrix

Rb �
r2
blon

I 0

0 r2
blon

I

 !
eqn 13

as a regulator in the ridge regression framework to shrink the b coeffi-

cients. The variance terms,r2
blon

andr2
blat
, control the smoothing in each

dimension; a very small variance leads to underfitting, whereas a large

variance can lead to overfitting (Eilers & Marx 1996). We selected the

variance components by calculating the Deviance Information Crite-

rion (DIC; Spiegelhalter et al. 2002) over 10 000 MCMC iterations

and optimizing the DIC over 400 pairs of variance components (Ap-

pendix S2). In simulation, we found that DIC and K-fold cross-valida-

tion methods performed similarly. The details of regularization and

ridge regression are beyond the scope of this paper and are explored in

more detail in (Hastie, Tibshirani & Friedman 2009) and Hooten &

Hobbs (2015).

Themodel described above yields the posterior distribution

½b0;b;r2;q;c;wjS�/
YJ
j¼1

Y
t2T

½sjðtÞjb0;b;r2j ;q;c;wjðtÞ�½b0�½b�½r2�½q�½c�½w�

eqn 14

where r2 � ½r2
j ; :::;r

2
J�, w is a vector of the indicators wjðtÞ, and S is a

matrix of observed locations. This is the form of a typical ‘integrated’

model wheremultiple data sources provide information about the same

underlying processes. Similar multidata source models have become

popular in demographic studies (e.g., Barker 1997; Burnham 1993;

Nasution et al. 2001; Schaub&Abadi 2011), but have not been as com-

mon in movement studies (but seeWinship et al. 2012). If inference for

multiple individuals is desired, the data model can be shared among

individuals while the process model parameters (b0, b) and regulator
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ðRb) can be allowed to vary by individual. This model can be extended

to account for additional stochasticity using a first-orderGaussian pro-

cess, such that zðtÞ�Nðb0 þ XðtÞb;r2
lRÞ, where r2

lR accounts for

process error separately. Such Gaussian processes are commonly used

as statistical emulators of complicated nonlinear mechanistic models

(Hooten et al. 2011; O’Hagan&Kingman 1978).

See Appendix S1 for prior specifications. The model was fit using

Markov chain Monte Carlo (MCMC), and a Gibbs sampler was con-

structed to sample from the posterior using the full-conditional distri-

butions for all parameters except q and c, because they were not

conjugate. Metropolis-Hastings was used to sample q and c. See

Appendix S3 forR code (RCore Team 2013).

CHARACTERIZ ING MOVEMENT

We are interested in quantities derived from z(t) that can be used as

movement descriptors. We describe three relevant derived quantities;

however, our framework can be extended to other systems and conser-

vation questions by modifying these quantities. These derived quanti-

ties represent the physical outcome in the movement path from various

movement behaviours. The Bayesian framework allows us to obtain

inference for derived quantities through Monte Carlo integration. We

can visualize these quantities both temporally and spatially. All quanti-

ties are calculated in the MCMC algorithm using techniques described

in Appendix S4 (spatial quantities) and Appendix S5 (temporal quanti-

ties).

To describe the quantities of interest spatially, we define a grid of

equally sized regions,Al for l = 1,...,L, that comprise the area for which

we desire inference. This method is similar to that used by Johnson,

London & Kuhn (2011) to describe diving behaviour of northern fur

seals (Callorhinus ursinus). The first derived quantity we describe is resi-

dence time, rl and is calculated on each MCMC iteration as a per area

frequency of locations in regionAl:

r1 ¼ lim
Dt!0

X
t2T

DtIfzðtÞ2Alg eqn 15

where the indicator I identifies whether location z(t) was in regionAl.

The second derived quantity of interest is speed. To calculate the

average speed per unit of area, we first need the velocity between the

location at time z(t) and the location at time z(t�Dt). When Dt is suffi-

ciently small, the first derivative of z(t) with respect to t can be approxi-

mated by

dzðtÞ
dt

� dðtÞ eqn 16

where

dðtÞ ¼ zðtÞ � zðt� DtÞ
Dt

eqn 17

In practice, Dt is constant for the entire time series, and velocity is

related to speed m(t) such that

mðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðtÞ0dðtÞ

q
eqn 18

The average speed inAl, given a positive residence time, is

�ml ¼
limDt!0

P
t2T DtmðtÞIfzðtÞ2Alg

rl
eqn 19

A large average speed describes areas where the individual was moving

quickly and spending little time. Therefore, large average speeds (19)

identify areas that individualsmay use to travel.

Persistence in direction is the third metric of interest andmay be use-

ful for describing directed, as opposed to nomadic, movement. We can

describe persistence in direction by deriving the turning angle, h, using
the velocity calculated in (17),

hðtÞ ¼ arccos
dðtþ 1ÞdðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðtÞdðtÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðtþ 1Þdðtþ 1Þ
p

 !�����
����� eqn 20

Given that residence time is positive, the average turning angle, h(t), in
regionAl is

�hl ¼
limDt!0

P
t2T DthðtÞIfzðtÞ2Alg

rl
eqn 21

Alternatively, we can describe these quantities temporally, negating

the need for a spatially defined grid. This decreases computation time

and allows the quantities to be visualized temporally and spatially.

Speed and persistence in direction can be calculated as they were in (18)

and (20) and residence time can be calculated as the inverse of speed:

rðtÞ ¼ 1

mðtÞ eqn 22

CASE STUDY: CANADA LYNX REINTRODUCTION IN

COLORADO

ColoradoDivision ofWildlife (nowColorado Parks andWildlife) initi-

ated a reintroduction programme for Canada lynx (Lynx canadensis) in

1997. Between 1999 and 2006, 218 wild-caught lynx from Alaska,

Yukon Territory, British Columbia, Manitoba and Quebec were

released in the San Juan Mountains within 40 km of the Rio Grande

Reservoir (Devineau et al. 2010). Individuals were fitted with either

VHF collars (TelonicsTM, Mesa, AZ, USA) that were active for 12 h

per day or satellite/VHF collars (SirtrackTM, Havelock North, New

Zealand) that were active for 12 h per week with locations obtained

using the Argos system (Devineau et al. 2010). Weekly airplane flights

were conducted over a 20 684 km2 area, which included the reintro-

duction area and surrounding high-elevation sites (>2591 m; Devineau

et al. 2010); attempts were made to locate each VHF-collared individ-

ual in the study area once every 2 weeks. Additional flights outside of

the study area were conducted when feasible and during denning sea-

son (Devineau et al. 2010). Accuracy of VHF locations was self-re-

ported as 50–500 m (Devineau et al. 2010). Irregular location data

were obtained from 1999 to 2011 due to one or both of the transmitter

components failing, logistical constraints or movement out of the study

area precluding VHF data collection. Therefore, data for each individ-

ual vary in the length of the time series, the temporal regularity of loca-

tions and the number of locations from each data type and error class.

We have analysed the telemetry data from twoCanada lynx (Appendix

S6).

We obtained 10 000 MCMC iterations, with a burn-in period of

1000 iterations. All data used in this paper are available in Appendix

S7. Additional results from fitting the model to simulated data are

available inAppendix S8.

Results

To visualize the fit of themodel to the data, we calculated stan-

dard posterior quantities, such as means and 95% credible

intervals for the marginal location in each direction (Fig. 1a,

b). Increasing uncertainty is evident during long periods of

missing data (Fig. 1a, b). The derived quantities were scaled

relative to the maximum value for that quantity over the indi-
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vidual’s lifetime and plotted both spatially, on a map of Color-

ado (Figs 1c, d, and 2), and temporally (Fig. 2). These relative

values are useful for visualizing the degree of each behaviour at

a given time point, despite the quantities having different units;

the degree of shading represents the strength of that behaviour,

with the size corresponding to the spatial uncertainty (Figs 1c,

d, and 2). The optimal variance terms for the regulator matrix

(13) and mean and 95% credible intervals for the covariance

matrix (2) are presented inAppendix S6.

Both individuals had multiple periods of fast speeds, large

turning angles and high residence times (Figs 1c, d and 2). For

these individuals, high residence time often indicated a corre-

sponding large turning angle; however, these behavioural

quantities were not always concurrent (Fig. 2). For example,

individual BC03M04 displayed periods early in the time series

where the turning angle was the strongest quantity, while speed

and residence time were fairly low, suggesting a searching or

nomadic behaviour (Fig. 2a). Both time series culminated with

the individuals residing in two specific counties (Clear Creek

and Summit), which includes an area that is considered impor-

tant lynx habitat (Loveland Pass; Colorado Parks and Wild-

life, pers. commun.). These results also indicate that lynx are

capable of consistent long-term movement across large dis-

tances without establishing an area of high residence time. For

example, within a period of two months, individual BC03F03

travelled approximately 480 km (posterior mean), from the

southern portion of Colorado (Mineral County) to southern

Wyoming (Medicine Bow National Forest, specifically the

area located within Carbon andAlbany counties; Fig. 2b).

Discussion

The process model we propose falls within the same class of

models as statistical emulators, functional data models and

process convolutions, and we showed that it can be written in

much the same way. Themodel presented could be written as a

hierarchical model, by allowing the latent process to be

stochastic. However, it is well known that hierarchical models

with two sources of unstructured error and lacking replication

will have identifiability issues (Hobbs&Hooten 2015). Given a

(a) (b)

(c) (d)

Fig. 1. Mean and 95% credible intervals of the marginal locations for two Canada lynx [BC03M04 (a) and BC03F03 (b)], with the observed loca-

tions. The posterior mean of each movement descriptor, shown with the counties of Colorado, for individuals BC03M04 (c) and BC03F03 (d). The

size of the point corresponds to spatial uncertainty, and the transparency indicates the strength of the behaviour at that location; for visualization

purposes, any value below 25% of the maximum value for that behaviour is not shown. Coordinates correspond to Universal TransverseMercator

zone 13N.
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(a)

(b)

Fig. 2. Mean relativemovement descriptors through time and space for twoCanada lynx reintroduced to Colorado [BC03M04’s (a) and BC03F03’s

(b)]. Coordinates correspond toUniversal TransverseMercator zone 13N.
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situation where there are strong constraints on the movement

process, it may be possible to separate data and process error.

For example, Brost et al. (In Press) were able to separately esti-

mate data and process error in a resource selection framework

by constraining the spatial domain of the process. However,

their study focused on a marine mammal, and therefore, the

process can be constrained to the marine environment (Brost

et al. In Press). Constraining movement in a terrestrial envi-

ronment may be possible but is less intuitive and will impose

strong assumptions.

In addition, one of the benefits of using a functional data

approach is its flexibility, in contrast to more constrained

mechanistic models. The simplicity of the processmodel results

in greater computational efficiency than other available meth-

ods for movement modelling. For example, our model can be

fit on the order of minutes for each individual, compared to

other models that require on the order of days (e.g., Hooten

et al. 2010; McClintock et al. 2014a). Although small-scale

movement patterns may be difficult to detect given the coarse

temporal resolution and the large amount of measurement

error associated with Argos locations, large-scale movement

patterns are easily discernible and informative. However,

researchers analysing data at a finer temporal scale could dis-

cern small-scale movement with properly scaled basis func-

tions (e.g., daily or weekly).

The model can be used to estimate an animal’s movement

path alone, but is especially useful for learning about move-

ment behaviours that describe how individuals are utilizing the

landscape. For example, persistence in direction may be used

to infer when and where an individual is migrating or dispers-

ing, whereas variation in direction may indicate habitat suit-

able for a home range (Haddad 1999; Morales et al. 2004). In

the data we analysed the movement descriptors corresponded

with anecdotal evidence of lynx movement behaviour. Many

existing methods for analysing location data explicitly model

the quantities that give rise to the movement path (e.g., speed,

turning angle, residence time, velocity), such that the quantities

must be estimated while fitting the model (mechanistic models;

e.g., Breed et al. 2012; Johnson et al. 2008; Jonsen, Flemming

& Myers 2005; McClintock et al. 2012; Morales et al. 2004;

Winship et al. 2012). In contrast, we use the equivariance

property of MCMC to calculate derived quantities as well as

the proper uncertainty associated with each behaviour (Hobbs

& Hooten 2015). Alternative ad hoc methods could be used,

such as calculating derived quantities based on the mean pre-

dicted path, but to ensure the validity of those quantities as

estimators with proper uncertainty, a procedure like the one

we describe is necessary. Quantities of interest beyond those

presented can be derived, such as bearing or tortuosity, or sum-

marized with respect to temporal and spatial features. How-

ever, our model would need to be adjusted to accommodate

other sources of measurement error (e.g., GPS data).

The model that we developed may be particularly well sui-

ted for analysing data sets that have not been collected

explicitly for movement analysis. These data sets may con-

tain multiple data types, have large amounts of error and

have been collected at a coarse temporal resolution. As such,

they may not be conducive for fine-scale mechanistic move-

ment modelling. We used a data set that embodied these

characteristics, the telemetry data from the Canada lynx

reintroduction to Colorado, to demonstrate that the FDA

approach can be used to estimate movement paths and asso-

ciated movement descriptors. The biological inference from

the derived movement descriptors can also be extended

beyond what we show here. For example, our framework

could be extended to incorporate spatial and temporal

covariates into the process model, similar to the approach

described by Hanks, Hooten & Alldredge (2015). In addi-

tion, the spatial distribution of the movement descriptors

can be used to summarize movement behaviour across linear

landscape features such as roads. Likewise, movement beha-

viour through nonlinear landscape features, such as National

Parks, can be described with the average posterior mean of a

movement descriptor within a spatial boundary. Our model

can also be generalized for use with multiple individuals. In

this case, the derived quantities can be aggregated to describe

population-level movement. This type of population move-

ment model allows the Argos and VHF covariance matrices

to borrow strength across individuals, potentially improving

parameter estimates. Such extensions are the subject of

ongoing research.
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