Modeling rare events through a $p\text{RARMAX}$ process

Marta Ferreira1 Luísa Canto e Castro2

1University of Minho, Portugal
 CMAT

2Faculty of Sciences, University of Lisbon, Portugal
 DEIO-CEAUL

6th Conference on Extreme Value Analysis
Fort Collins, Colorado - EUA June 22-26, 2009
Motivation

- Most often, the processes under study when we are making inference on maxima, show short term dependence which can conveniently be modeled by a markovian structure;

- Data presenting sudden large peaks (e.g. telephone signals, stock market prices), are potential candidate for modeling as an ARMA process with heavy-tailed noises;

- ARMAX processes \((X_i = cX_{i-1} \vee Z_i, c \in (0,1))\) present a nice treatment in what concerns extremal properties (Alpuim, 1989);

- MARMA processes have been already considered a good alternative for modeling this kind of data - similar paths to the heavy-tailed ARMA and present a nice treatment in what concerns extremal properties (Davis and Resnick, 1989).
The power max-autoregressive process, pARMAX, $X_i = X_{i-1}^c \lor Z_i$, $c \in (0,1)$, (Ferreira and Canto e Castro 2008), also presents similar paths to the heavy-tailed ARMA and easily derived extremal properties.

Motivation for model pARMAX:

- the power parameter, c, is directly related to the coefficient of asymptotic tail dependence (η) of Ledford and Tawn (1996, 1997), calculated for random pairs $(X_i, X_{i+m}) \longrightarrow c$ can be estimated using η estimators.

$\rightarrow p$RARMAX - a generalization of pARMAX by introducing a random component

- the same extremal properties and also similar sample paths;
- more applicable for modeling real phenomena: we present a methodology based on minimizing the Bayes risk in classification theory and analyze this procedure through a simulation study.
500 realizations of an AR(1), a pARMAX and of a pRARMAX, respectively.
Consider:

- \(\{Z_i\}_{i \in \mathbb{Z}} \) and \(\{U_i\}_{i \in \mathbb{Z}} \) i.i.d. copies of \(Z \) and \(U \), respectively;

- \(U_j \) independent of \(\{Z_i\}_{i \in \mathbb{Z}} \), for all integer \(j \);

- \(Z \) and \(U \) both with nonnegative support and non degenerate d.f. \(F_Z \) and \(F_U \) (resp.);

A stationary process \(\{X_i\}_{i \in \mathbb{Z}} \) is pRARMAX process if it satisfies,

\[
X_i = U_i X_c^{i-1} \lor Z_i, \quad 0 < c < 1, \ i = 0, \pm 1, \pm 2, \ldots \tag{1}
\]

(If \(U = 1 \) we have pARMAX).
Assuming $-\infty \leq E \log U < 0$ and $E \log(Z \vee 1) < \infty$,

$$X_n = \bigvee_{j=0}^{\infty} \prod_{i=0}^{j-1} U_{n-i}^c Z_{n-j}^c$$

(2)

is a.s. finite and its law is the unique such that (1) holds. ($\prod_{i=0}^{j-1} U_{n-i}^c = 1$ for $j = 0$)

Any d.f. K that satisfies the stationarity equation,

$$K(x) = F_Z(x) \int_{u} K((x/u)^{1/c}) dF_U(u),$$

(3)

is a stationary marginal d.f. of the process.

Example: If Z has d.f.,

$$F_Z(x) = \frac{1 - x^{-1/\gamma}}{1 - \frac{cy}{1 + cy} x^{-1/(c\gamma)}} 1\{x \geq 1\},$$

and $U \sim U(0, 1)$, then by (3), $K(x) = (1 - x^{-1/\gamma}) 1_{[1, \infty)}(x)$, is a non degenerate marginal distribution of $\{X_i\}_{i \in \mathbb{Z}}$. □
Assuming that $\{X_i\}_{i \in \mathbb{Z}}$ is a stationary pRARMAX process with marginal d.f. K, then:

- it is in the same domain of attraction of innovations Z with the same tail index γ;
- it is regenerative and aperiodic, hence, β-mixing;
- satisfies condition $D''(u_n)$ (Leadbetter and Nandagopalan 1989) for $(u_n)_{n \geq 1}$, such that, $1 - K(u_n) = O(1/n)$;
- if Z is in the Fréchet domain of attraction, then $\theta = 1$ and $\eta = \max(1/2, c)$
 (based on random pairs (X_i, X_{i+1}))

\downarrow

exceedances tend to occur singly as the threshold increases, similar to the i.i.d. case advantage (for inferential purposes) if θ is replaced by a pre-asymptotic form on

$$P(\bigvee_{i=1}^{n} X_i \leq u_n) \sim (K(u_n))^{n\theta}, \quad n \to \infty$$

based on Bortot and Tawn (1998), we consider the pre-asymptotic extremal index,

$$\theta(u) \sim 1 - (t(u))^{1-1/\eta} L(t(u)), \quad \text{as } u \to \infty \text{ with } t(u) = (1 - K(u))^{-1}$$
Given an observed time series, how can we decide if pRARMAX is a suitable model?

If so, then \(X_i = \max(U_iX_i^c, Z_i) \):

- \(X_i \) either comes from the first or the second component of the maximum.

- \(G_0 \): the set of \(X_i \)’s that come from the second component (\(Z_i \))

- \(G_1 \): the set of \(X_i \)’s coming from the first component (\(U_iX_i^c \))

We will say that the model fits, if for the observations in \(G_0 \) the assumptions considered for \(Z \) are not rejected, and for the observations in \(G_1 \), when divided by \(X_i^c \), the hypotheses assumed for \(U \) are not rejected as well.

- if \(X_i \geq X_i^c \) then \(X_i \in G_0 \)
- if \(X_i < X_i^c \) (?) we need to establish a criterion for decision
- F_0 is the d.f. of X_i in G_0: $F_0(x) = P(X_i \leq x, X_i < X_{i-1}^c, U_i X_{i-1}^c \leq Z_i)$

- F_1 is the d.f. of X_i in G_1: $F_1(x) = P(X_i \leq x, X_i < X_{i-1}^c, U_i X_{i-1}^c > Z_i)$

Similar to the procedure in classification theory, for each λ (0 \leq λ \leq 1),

$$\mathcal{B}_\lambda = \left\{ t : \frac{\pi_0 f_0(t)}{\pi_0 f_0(t) + \pi_1 f_1(t)} \leq \lambda \right\}, \quad \pi_0 = P(X_i \in G_0) = 1 - \pi_1,$$

is the region that minimizes the Bayes error (Storey 2003; Rohatgi 1976) and we classify X_i in G_1 if $X_i \in \mathcal{B}_\lambda$.
Considering a \(p \)RARMAX process of the given Example:

\[
f_1(x) = \frac{x^{-1/(c\gamma)} F_Z(x)}{1 + c\gamma} \quad \text{and} \quad f_0(x) = \frac{x^{-1/(c\gamma)} f_Z(x)}{1 + c\gamma}
\]

For each fixed \(\lambda \) we obtain:

\[
B_\lambda = \left\{ t : \frac{\pi_0 t^{-1/(c\gamma)} f_Z(t)}{\pi_0 t^{-1/(c\gamma)} f_Z(t) + (1 - \pi_0) t^{-1/(c\gamma)} - 1} \leq \lambda \right\} = \{ t : t \geq t_\lambda \},
\]

- The captured observations \(U \) are no longer standard Uniform but Uniform conditional on \(X_i \) of the form \(U_i X^c_{i-1} \) and under the criterion, \(X_i > t_\lambda \). In this case they have distribution, \(Beta\left(\frac{1}{c\gamma} + 1, 1\right) \).
1. Test if, $X = (X_1, X_2, \ldots, X_n)$, is in the Fréchet($\gamma_X$) domain of attraction, for some $\gamma_X > 0$, i.e., test the extreme value condition, $X \in D(G_{\gamma_X}^{\gamma_X \geq 0}$ (Dietrich et al. 2002) and estimate γ_X (e.g., Hill estimator);

2. Estimate parameter c of $pRARMAX$ through the estimation of η (which is the tail index, γ_T, of the transformed r.v.’s $T_i^{(n)} = \min((n + 1)/(n + 1 - R_i), (n + 1)/(n + 1 - R_{i+1}))$, $i = 1, \ldots, n$, where R_i denotes the rank of X_i among (X_1, \ldots, X_n);

3. Capture innovations Z: if $X_i > X_{i-1}^c$, where $\hat{c} = \hat{\gamma}_T$ was obtained in 2., then $X_i = Z_i$, and test if Z is in the Fréchet domain of attraction;
4. Capture the random coefficients U: if $X_i < X_{i-1}^c$ and $X_i \in B_\lambda (X_i > t_\lambda)$, then

$$U_i = X_i / X_{i-1}^c;$$

5. Test if the sample of r.v.'s U captured above has distribution $Beta(1/(\bar{\gamma}_x c) + 1, 1)$ (e.g., Kolmogorov-Smirnov test).

λ must be small in order to penalize more considerer X_i of the form $U_i X_{i-1}^c$, when in fact it is of the form Z_i.

- as the first ones are less frequent, they must be captured with less uncertainty (although they should be in enough amount) in order to achieve reliable results in the goodness-of-fit test on step 5.
Suggestion for λ based on a simulation study

<table>
<thead>
<tr>
<th>c</th>
<th>$\gamma = 0.4$</th>
<th>$\gamma = 0.8$</th>
<th>$\gamma = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td>0.25 0.15 0.1</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td>0.25 0.2</td>
<td>0.15 0.1 0.05</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td>0.15 0.15</td>
<td>0.1 0.05 0.05</td>
</tr>
<tr>
<td>0.8</td>
<td>0.35 0.25</td>
<td>0.2 0.1 0.1</td>
<td>0.05 0.05 0.05</td>
</tr>
<tr>
<td>0.9</td>
<td>0.25 0.15</td>
<td>0.1 0.1 0.1</td>
<td>0.05 0.05 0.05</td>
</tr>
</tbody>
</table>
Consider the square of the log-returns $R_i = \log P_{i+1}/P_i$, $1 \leq i \leq n - 1$ ("volatility" can be measured through $|R_i|$ or R_i^2); P_i is the closing index of the i^{th} trading day in years 1957-1987, $n = 7733$; large peak: Monday stock market crash 19th October 1987.

Obtain a data series that can be modeled by a pRARMAX with standard Pareto marginals \rightarrow robust regression: our analysis focuses on the transformed data, $X_i = aR_i^2 + b$, with estimates $a = 13618.3$ and $b = 1.1$.

An application to financial data: $S&P500$ stock market index
Step 1: Test the extreme value condition, $X \in \mathcal{D}(G_{\gamma_X})_{\gamma_X \geq 0}$ and estimate γ_X.

Figure: Top-left: sample path of the test statistic and horizontal line is the critical value above which reject $X \in \mathcal{D}(G_{\gamma})_{\gamma \geq 0}$; sample paths of Hill, moment and maximum likelihood estimators, resp.

- **extreme value condition not rejected for $165 \lesssim k \lesssim 900$; $\hat{\gamma}_X \approx 0.5$**
Evaluate the effect on the tail of the large peak: data considered until the day before

\[\gamma_x \approx 0.4 \]

Figure: Sample paths of Hill (left), moment (center) and maximum likelihood (right).
Step 2: estimate parameter c through η (tail index of the transformed $T^{(n)}$)

Figure: Sample paths of Hill (left), moment (center) and maximum likelihood (right) estimators of η.

The estimate is about 0.85; however, due to some stability also around 0.75, we consider more than one scenario: $\hat{c} = 0.85$, $\hat{c} = 0.8$ and $\hat{c} = 0.75$.
Step 3: Capture innovations $Z \ (X_i > X_{i-1}^\widehat{c})$ and test $Z \in \mathcal{D}(G_\gamma)_{\gamma \geq 0}$

Figure: Left: sample path of the test statistic, $PE_{k,n}$, for the innovations, Z, captured from X on step 3.; sample paths of Hill (center) and moment (right) estimators, for Z.
Steps 4 and 5: Capture U (if $X_i < X_{i-1}^c$ and $X_i \in \mathcal{B}_\lambda$ then $U_i = X_i/X_{i-1}^c$; $\lambda = 0.05, ..., 0.5$, $\hat{c} = 0.85, 0.8, 0.75$) and test $U \sim \text{Beta}(1/(0.5 \times \hat{c}) + 1, 1)$ (K-S test)

![Empirical and theoretical d.f.'s of the captured U for $\hat{c} = 0.85$.](image)

Figure: Empirical and theoretical d.f.'s of the captured U for $\hat{c} = 0.85$.

rejection for $\lambda \geq 0.20$; $\lambda = 0.15$ matches the simulation study (with 29 obs. captured).
Taking $\hat{c} = 0.8$ (less catches), then $Beta(1/(0.5 \times 0.8) + 1, 1)$ is rejected for $\lambda \geq 0.3$, with the best fit occurring for $\lambda = 0.2$, matching once again the simulation results.

Figure: Empirical and theoretical d.f.’s of the captured U for $\hat{c} = 0.8$.
For $\hat{c} = 0.75$ (even less catches), only rejects $Beta(1/(0.5 \times 0.75) + 1, 1)$ for $\lambda = 0.5$.

Figure: Empirical and theoretical d.f.’s of U captured with $\hat{c} = 0.75$.

Hence a pRARMAX can be a good option for the modeling of the transformed data X.
Estimating the probability that the maximum volatility exceeds a risky amount (e.g. 0.2), using \(P \left(\bigvee_{i=1}^{n} X_i \leq u_n \right) \sim \left(K(u_n) \right)^{n\theta} \) with \(\theta = 1 \) (the true value for \(pRARMAX \)) and \(\theta \) replaced by the pre-asymptotic \(\theta(u) = 1 - u^{\frac{1}{\gamma}(1-1/c)} \); for \(\gamma = 0.5, 0.45, 0.4 \) (\(\gamma = 0.4 \), when considering data only until the day before the big market crash) and the 3 scenarios for parameter \(c \) (0.85, 0.8 and 0.75)

<table>
<thead>
<tr>
<th></th>
<th>(\gamma = 0.5)</th>
<th>(\gamma = 0.45)</th>
<th>(\gamma = 0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c = 0.85)</td>
<td>0.053222</td>
<td>0.010474</td>
<td>0.002881</td>
</tr>
<tr>
<td>(c = 0.8)</td>
<td>0.057372</td>
<td>0.015703</td>
<td>0.003028</td>
</tr>
<tr>
<td>(c = 0.75)</td>
<td>0.059219</td>
<td>0.01609</td>
<td>0.00308</td>
</tr>
<tr>
<td>(\theta = 1)</td>
<td>0.060295</td>
<td>0.016281</td>
<td>0.003101</td>
</tr>
</tbody>
</table>

the probability estimates decrease significantly with the decrease of \(\gamma \), but very small changes with \(c \) (\(\gamma \) is crucial)

the higher the \(\gamma \) and the \(c \), the greater the differences in estimates

