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Geostatistics of Extremes

» Our goal is to model spatial extremes
» Conventional geostatistics are not relevant as
e Extremes are far from being Normal
e Variogram based approaches may not even exist -
E[Y(x)] = 400, Var[Y(x)] = +o0
» We want to extend the EVT to the spatial case

Definition (Max-stable processes)

A max-stable process Z(-) is the limit process of maxima of i.i.d.
random fields Y;j(x), x € R?. Namely, for suitable a,(x) > 0 and
bn(x) € R,

Z(x) = lim MXELYil) = ba()

Rd
n—+-00 an (X) ’ X<

-

» We hope that, as the GEV/GPD, max-stable processes will be
good candidates for modelling spatial extremes
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Towards Parametric Models

» Schlather [2002] introduced a very useful representation of
max-stable processes

Theorem

Let {£;}i>1 be the points of a homogeneous Poisson process on R
with intensity d\(€) = £72d¢, and {Y;(-)}i>1 be i.i.d. replicates of
a stationary process on R? such that E[max{0, Y(x)}] = 1.

Then

Z(x) = m’axf,- max{0, Yi(x)}

is a stationary max-stable process with unit Fréchet margins

» Different choices for Y(-) lead to different max-stable
processes
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The Smith model

» Smith [1990] proposed to take Yj(x) = p(x — X;)
where ¢ is a zero mean multivariate normal density with
covariance matrix X and {X;};>1 is a homogeneous Poisson
process, both on RY.

£(x)

o 2 4 6 8 10
X X

Figure: Two realisations of the Smith model in R and R?. R: 02 = 1.
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The Schlather Model

» Schlather [2002] proposed to take Y;(-) as an appropriately
scaled stationary Gaussian processes with correlation function

p.

Figure: Two realisations of the Schlather model in R?. Left:
Whittle-Matérn. Right: Cauchy.
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The Schlather Model (2)

Table: Correlation function families implemented in the package.

Whittle-Matérn o) =aier (2) K (L), w>0
Cauchy p(h) = [1+ (2) ] v>0
Powered Exponential p(h) = c;exp [— C—';)V} O<v<2
Bessel p(h) =c1 (32)"T(v+1)J, (C2) v> 42

where [ is the gamma function, K, is the modified Bessel function
of the third kind with degree v and J, is the Bessel function of
order v.

c1 is the sill parameter, 0 < ¢; <1
Cp is the range parameter, ¢, > 0

v is the smooth parameter

8/47



Plotting covariance functions

Example (File covariance.R)

covariance(sill = 1, range = 1, smooth

xlim = c(0, 10), ylim = c(-.

covariance(sill = 1, range
add = TRUE, col
covariance(sill = 1, range
add = TRUE, col
covariance(sill = 1, range
add = TRUE, col

1,

smooth
xlim =
smooth
xlim =
smooth
xlim =

legend("topright", c("Whittle-Matern",
1ty = 1, col = 1:4, inset = 0.05)

=1, cov.mod =
2, 1))

1, cov.mod =
0, 10), ylim
1, cov.mod =
c(0, 10), ylim
=1, cov.mod =
c(0, 10), ylim
"Cauchy", "Pow.

"whitmat",

"cauchy",

=c(-.2, 1))
"powexp",

= c(-.2, 1))
"bessel",

= c(-.2, 1))
Exp.", "Bessel"),

p(h)

1.0

02 04 06
I

0.0

Whitt‘_lefMatern
aucl

oW, EXp.
Bessel P
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Unconditional Simulation of Max-stable Processes
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Simulation Algorithms

» Remind Schlather’s representation of max-stable processes
» It involves the maximum over an infinite number of random
processes replications - ouch!!!

Theorem (Schlather (2002))

Let N be a P.P, d\(y,&) = £2dyd¢. Assume that Y is uniformly
bounded by C € (0,+00) and has support in the ball b(o,r),

r < 4oo. Let B be a compact set, Y; be i.i.d. replications of Y,
Ui be i.i.d. uniformly distributed on B, = Uyxepb(x,r), & be i.i.d.
standard exponential r.v. and I, Y;, &, U; be mutually
independent. Then, on B,

X) = su i(x U). cee,m
Z(x) = |B|sup ‘{ :g::k 7 =1, ) :}

; _Cc . Yix=U)
where m is such that ST < maxi<i<m S, , equals Z(-)
almost surely.

.
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» The beauty of the previous theorem is that we only have to
take the maximum over m replications, m being finite!!!

» The function rmaxstab uses this algorithm to generate
max-stable random fields

Example (File: simMaxStab.R)
= B

10

Figure: Ouput of simMaxStab.R
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Comments on rmaxstab and grid locations

» Simulation from the Smith model is pretty fast
» Simulation from the Schlather model isn't (turning bands)
» I'll try to improve it — circulant embedding method

» For large grids, you should prefer using the RandomFields
package

Example (RandomFields package)

x <- seq(0, 10, length = 200)

y <- X

data <- MaxStableRF(x, y, grid=TRUE, model="wh",
param=c(0,1,0,1, 1),
maxstable="extr", n = 1)

data <- t(data)

image(x, y, sqrt(data), col = terrain.colors(30))
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Spatial Dependence of Max-Stable Random Fields
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For stationary gaussian processes, the variogram is useful to
assess how evolves dependence in space

10— x2) = pVar [Y(x) — Y ()] = 0 {1~ pla — )}

For extreme observations, the variance (and even the mean)
might be infinite

There's a pressing need to know how evolves the spatial
dependence of extremes

The extremal coefficient function is what we need
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Extremal coefficient function

Let Z(-) be a stationary max-stable random field with unit
Fréchet margins.
The extremal coefficient function 6(-) is defined by

Pr[Z(x1) < z, Z(x2) < 2] = exp {_M}

p4
If the random field is isotropic, this simplifies to
0(h) = 6(Ix1 — x2l]),

where h is the euclidean distance between x; and xo.
6(h) = 1 is equivalent to complete dependence as

PriZ(x1) < z,Z(xp) < z] = exp(—1/z) = Pr[Z(x1) < 2]
6(h) = 2 is equivalent to independence as

PriZ(x1) < z,Z(x) <z] = exp(—2/2)
= Pr[Z(x1) < z]Pr[Z(x) < Z]
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The fitextcoeff function

» Smith [1990] and Schlather and Tawn [2003] proposed two
estimators for §(h;;), where hj; is the euclidean distance
between locations x; and x;.

» These estimators are implemented in the fitextcoeff function

Example (file extCoeff.R)
o |
N
@ |
-
© |
—~ =~
ey c
5 5
< |
-
o |
-
o |
— T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
h h
Figure: Pairwise extremal coefficient estimates and lowess curves. Left:
Smith. Right: Schlather (Whittle-Matérn). 17/47



Variogram based approaches

Cooley, Guillou, Naveau and Poncet proposed variogram
based approaches especially designed for extremes

The madogram [Matheron, 1987] is

v(xi —x2) = E[|Z(x1) — Z(x2)[]

> As stated earlier, the mean might be infinite

» Cooley et al. proposed modified madograms. For instance,

the F-madogram

ve(a — x2) = SE[F{Z(a)} ~ F{Z(a)]

where Z(-) is a stationary max-stable random field with unit
Fréchet margins and F(z) = exp(—1/z).

Hence F{Z(x1)} ~ U(0,1) and the F-madogram is well
defined
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Connections with the Extremal Coefficient

» It is not hard to show that

9(X1 - X2) =

Example (file madogram.R)

0.15
1

0.10
1

VE(N)

0.05
1

0.00
1

1+ 2I/F(X1 — X2)

12

1-— 2I/F(X1 — X2)
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» It is not hard to show that

H(Xl - X2) =

Example (file madogram.R)

o)

o

N

Connections with the Extremal Coefficient

1+ 2VF(X1 — X2)
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A-madogram
6(-) doesn't fully characterise the spatial dependence - only
PriZ(x1) < z,Z(x) < z]

Naveau et al [2009] introduce the A-madogram as follows

1
mba—x) = SE[FHZ0a)}-FHZe)}]l,  0<A<1
The idea is to consider Pr[Z(x1) < z1,Z(x2) < z] where

z1=MXzand zo = (1 — \)z.
It is not hard to show that

V(W12 3
14+ V(W 1=2) (T4HN2-))

I/)\(Xl — X2)

where Pr[Z(x1) < z1, Z(x2) < 2] = exp{—Viq (21, 22)}.
Remark: The F-madogram is somehow similar to the
A-madogram when A = 0.5
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A-madogram (2)

» The A-madogram is a really nice tool

» It's not easy how to interpret it though

Example (File Imadogram.R)

——

Figure: A-madogram (left) and its binned version (right).
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Fitting Max-stable Processes to Data
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Why is it so difficult?

» So far, we haven't talk too much about parametric models

> It is almost impossible to get analytical CDF for these models
> Indeed as Z(x) = max; & Y;" (x), Y7 (x) = max{0, Y;(x)}

» Hence to get the k-variate CDF we need to compute

F(zi,...,zx) = Pr[m_axf,-Yf(xj) <z,j=1,...,k]

_ . Zj
- [5’ =Y ()

exp {—/Rd /R]I (5 < min Yféxj)> 5‘2d§dp{v(-)}}

- exp{—/Rd max %ﬁxj)dp{y(')}}

» The number of possible cases becomes quickly intractable
when k gets large

,W,jzl,...,k]
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Least Squares
» This led Smith [1990] to use least squares
» Find v minimizing
0(x; — x;) — 0(x; — x;
i<j SWX = Xj

Example (File leastSquares.R)

Estimator: Least Square
Model: Schlather
Objective Value: 1025.681
Covariance Family: Powered Exponential

Estimates
Marginal Parameters:
Assuming unit Frechet.
Dependence Parameters:
sill range smooth
1.000 1.612 1.129

Optimization Information
Convergence: successful
Function Evaluations: 172
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Maximum pairwise likelihood estimator

» As already stated the k-variate densities aren't analytically
known

» One can maximise pairwise likelihood instead of full likelihood

lp(z; ) ZZIogfzk ,zk ,1p)
i<j k=1
» The MPLE ip shares similar properties with the MLE
bp ~ N (0, HW) T IW)H@) )

where H(¢) = E[V2(,(1; Z)] and J() = Var[V{,(%; Z)] and
the expectations are w.r.t. the “full” density.
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Maximum pairwise |

Example (File pairwise.R)

Estimator:

Model:

Pair. Deviance:
TIC:

Covariance Family:

Estimates

MPLE

Schlather

964496 .2

964808.7

Powered Exponential

Marginal Parameters:
Assuming unit Frechet.
Dependence Parameters:
sill range smooth
0.9777 1.8524 0.5953

Standard Error Type: score

Standard Errors

sill range smooth
0.2393 0.6415 0.2629

Asymptotic Variance Covariance

sill
sill 0.05726
range -0.13735
smooth -0.06208

range smooth
-0.13735 -0.06208

0.41152  0.14204
0.14204  0.06910

Optimization Information
Convergence: successful
Function Evaluations: 60

ikelihood estimator (2)

Estimator:

Model:

Pair. Deviance:
TIC:

Covariance Family:

Estimates

MPLE
Smith
996556 .5
996682.5
Gaussian

Marginal Parameters:

Not estimated.

Dependence Parameters:

covil covi2

cov22

0.9063 0.3624 3.2020

Standard Error Type: score

Standard Errors
covil covi2

cov22

0.06922 0.09537 0.27087

Asymptotic Variance Covariance

covil

covi2 cov22

covil 0.004791 0.002209 0.003831
covi2 0.002209 0.009095 0.006482
cov22 0.003831 0.006482 0.073370

Optimization Information
Convergence: successful
Function Evaluations: 56
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» The use of the MPLE enables us to “easily” perform model
selection such as AlC, likelihood ratio tests

» One has to pay attention that we now deal with misspecified
models i.e. we use pairwise likelihood instead of full likelihood
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Takeuchi Information Criterion

» Recall that AIC = —2{¢(¢)) — p}, where p = dim(%))
» In presence of misspecification, the use of AIC is not justified
as the second Bartlett idendity is not satisfied i.e.

E[V?(p(4; Z)] + Var[VLp(4: Z)] # 0
» One should prefer the TIC

TIC = ~26,(p) - 2tr {J(Bp)H() |

» AIC is just a special case of TIC where the second Bartlett
idendity holds i.e.

JW)H@) ™! = —1d, = TIC = AIC, Id, = pxp id. matrix

Example (file TIC.R)

TIC(MO, M1)
MO M1
1022201 1022257
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Likelihood ratio test under misspecification

» Recall that the likelihood ratio test is based on
2{e() — thro bu)} — 3 - +o0

where 1) = (k, ¢), ¢, is the MLE under the restriction
k = Ko and p = dim(k)
» In presence of misspecification, this result slightly differs

p
2{€p(1z;_p)_£p(ﬁ07€gno)} —>Z)\ixi7 n— 400
i=1

where the Ajs are the eigenvalues of
(H71H L), {—(H™1),} Y and X; < 2
» There exist two different ways to perform model selection
RJ Approximate the distribution of >-%_; A;X; [Rotnitzki and
Jewell, 1990]

CB Adjust £,(-) to have the appropriate curvature [Chandler and
Bate, 2007]
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Likelihood ratio test under misspecification (2)
» Rotnitzki and Jewell suggest
26 {€o(ts) — Colr0: dp) } ~ X2

but this is only an approximation that matches only the first
moment
» Chandler and Bate suggest replacing /,(-) by

CA) = Lp(vs), W =p+ M MA(Y — 1)
where MMT = H and MaMJ = H71JH™!
so that EA(l/AJp) has the appropriate curvature H~1JH™!

Example (file likratiotest.R)

anova(MO, M1) anova(MO, M1, method = "CB")
Eigenvalue(s):
7.47
Analysis of Variance Table Analysis of Variance Table
MDf Deviance Df Chisq Pr(> sum lambda Chisq) MDf Deviance Df Chisq Pr(> sum lambda Chisq)
MO 2 1036388 MO 2 111027
M1 3 1036369 1 19.082 0.1100 M1 3 111025 1 1.5569 0.2121
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Assuming non unit Fréchet margins
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So far only max-stable processes with unit Fréchet margins
were considered

For real world analysis, the unit Fréchet assumption is too
restrictive

We need a more flexible inferential procedure

» The MPLE, as we will see later, is perfectly adapted for this

» A first idea consists in transforming data to the unit Fréchet

scale i.e.
1

log Fo{Y(x)}

where F,(-) is either the empirical CDF or any appropriate
CDF

Then fit max-stable processes as before

Z(x;) =

But this is not satisfactory as
e predictions at ungauged locations won't be possible
e standard errors will be underestimated as we suppose that our
data were originally unit Fréchet
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How do we allow for unknown GEV margins?

» To transform GEV data to the unit Fréchet scale we need the
mapping

N 600
EY(x) o <1 —l—f(x)%)

» Hence

PriY(x1) < y1, Y(2) < yo] = Pr[Z(x1) < t(11), Z(x2) < t(y2)]
» And the log-pairwise likelihood becomes
Gy v) = 3 log (™), tr)i v} + log I
i<j k=1
where |J(y,£i))| is the jacobian of the mapping t i.e.
(i) 1/€(x)—1
(i) 1 y . — H(xi)
|J(yk )| O'(X,‘) < +£(X) O'(X,') )
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Dimensional curse

» Fitting one GEV to each location will lead to 3K + p
parameters to be estimated

» We thus need response surfaces on the GEV parameters to get
more parsimonious models

n= Xuﬂl“ o = X5, §= Xfﬂf

» The current trend surfaces implemented are linear models and
p-splines with radial basis functions

Example (File fitmaxstab.R)
Estimator: MPLE
Model: Schlather
Pair. Deviance: 2589198 Shape Parameters:
TIC: NA shapeCoeff1
Covariance Family: Powered Exponential 0.275
Dependence Parameters:
Estimates sill range smooth
Marginal Parameters: 0.9990 1.4927 0.6946
Location Parameters:
locCoeffl 1locCoeff2 Optimization Information
-10.722 2.229 Convergence: successful
Scale Parameters: Function Evaluations: 327
scaleCoeffl scaleCoeff2 scaleCoeff3
4.139 2.060 1.042
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» Once we have fitted our max-stable process
» One often want to check if our model is appropriate or not

» This amounts to check if

1. The margins are appropriately modelled
2. The spatial dependence structure is satisfactory

» This can be done through two different functions

1. qqgev
2. madogram, fmadogram
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Checking the margins

» The idea is to check if the GEV parameters predicted by the
trend surfaces are relevant

» For this we will compare them to the GEV MLE at each
location

Example (File modelCheck.R)

Emodel
|

8
80 100
| |
10 15
| )

60
|

OModel

Hwmode!
Frequency

40
|
5

20
|

Rl

<10 5 0 5 10 15 20 20 40 60 80 100 00 01 02 03 04
HmLE OmLE EmLe

Figure: Checking the margins using the qqgev function.
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Checking the spatial dependence parameters

» The idea is to check if the model is able to reproduce the
spatial dependence structure

» This is done by comparing semi-parametric estimates for the
extremal coefficients and the ones predicted from the model

Example (File modelCheck.R)

Veln)
0.10 0.5 0.20
\ \

0.05
L

o)
1.0 1.2 14 16 18 20 22

0.00
|

Figure: Checking the spatial dependence structure using the fmadogram
function.
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Knowing the spatial dependence structure is not enough
Sonner or later, one will be interested in prediction

We will see how it is possible to get prediction at ungauged
locations

Currently, there are two possible types of predictions

1. Pointwise predictions
2. Conditional predictions

This is achieved with the following functions

1. predict, map
2. condmap
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Pointwise quantile

» As we fit trend surfaces for each GEV parameters, it is
possible to know the distribution of extreme for each
coordinates within the region

» The return level with return period T-year is

zr(x) = p(x) +

» This is the level which is expected to be exceeded once every

T-year

Example (File predict.R)

predict(fitted, new.coord, ret

lon lat loc
1 4.399032 8.202387 -0.9648912
2 3.392812 2.442806 -3.0530930
3 4.278938 3.011325 -1.2141221

1o = /)6 1

i ()

.per = 50)

scale shape Q50
43.11199 0.2473414 282.2889
22.96123 0.2473414 147.8065
31.52409 0.2473414 205.9050
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Maps of pointwise estimates

» The map function produces maps for the GEV parameters as
well as return levels.

a(x) Qz0(x)

—140° "140 —

//— \

Figure: Maps of the pointwise estimates for the location, scale and
20-year return level.
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Maps of conditional quantiles

» A conditional return level is defined as follows

PriZ(x2) > z|Z(x1) > z1] = %, PriZ(x) > z1]=1—- —

1
Ty

Example (File predict.R)

lat
2.0

~
o

Q
130 /

«
o

1.8

1.6

2.6 2.8 3.0 3.2 3.4
lon
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Conclusion

» Max-stable processes are asymptotically justified models for
spatial extremes

» The SpatialExtremes provides functions to fit and analyse
max-stable processes to spatial extremes

» | hope you will find it useful

Weak points

» The package is currently in intensive development - some bugs

might (well almost surely) exist

» The optimisation might fail for complex data - need more
robust optimisation. Double check your estimates!

» Computing the asymptotic covariance matrix is unstable too -
finite difference may fail

» Other max-stable models will be available soon

» Other approaches for spatial extremes modelling are needed

o
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» If you need more details, a package vignette has been written

» You can have a look by invoking
vignette( “SpatialExtremesGuide” )

» You can also have a look at its web page

http://spatialextremes.r-forge.r-project.org/

THANK YOU FOR YOUR ATTENTION!
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