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Geostatistics of Extremes

◮ Our goal is to model spatial extremes
◮ Conventional geostatistics are not relevant as

• Extremes are far from being Normal
• Variogram based approaches may not even exist -

E[Y (x)] = +∞, Var[Y (x)] = +∞

◮ We want to extend the EVT to the spatial case

Definition (Max-stable processes)

A max-stable process Z (·) is the limit process of maxima of i.i.d.
random fields Yi(x), x ∈ R

d . Namely, for suitable an(x) > 0 and
bn(x) ∈ R,

Z (x) = lim
n→+∞

maxn
i=1 Yi(x) − bn(x)

an(x)
, x ∈ R

d

◮ We hope that, as the GEV/GPD, max-stable processes will be
good candidates for modelling spatial extremes
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Towards Parametric Models

◮ Schlather [2002] introduced a very useful representation of
max-stable processes

Theorem

Let {ξi}i≥1 be the points of a homogeneous Poisson process on R+

with intensity dΛ(ξ) = ξ−2dξ, and {Yi (·)}i≥1 be i.i.d. replicates of
a stationary process on R

d such that E[max{0,Y (x)}] = 1.
Then

Z (x) = max
i
ξi max{0,Yi (x)}

is a stationary max-stable process with unit Fréchet margins

◮ Different choices for Y (·) lead to different max-stable
processes
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The Smith model
◮ Smith [1990] proposed to take Yi (x) = ϕ(x − Xi)

where ϕ is a zero mean multivariate normal density with
covariance matrix Σ and {Xi}i≥1 is a homogeneous Poisson
process, both on R

d .
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The Schlather Model

◮ Schlather [2002] proposed to take Yi(·) as an appropriately
scaled stationary Gaussian processes with correlation function
ρ.
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Figure: Two realisations of the Schlather model in R
2. Left:

Whittle-Matérn. Right: Cauchy.
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The Schlather Model (2)

Table: Correlation function families implemented in the package.

Whittle–Matérn ρ(h) = c1
21−ν

Γ(ν)

(

h
c2

)

ν

Kν

(

h
c2

)

, ν > 0

Cauchy ρ(h) = c1

[

1 +
(

h
c2

)2
]

−ν

, ν > 0

Powered Exponential ρ(h) = c1 exp
[

−
(

h
c2

)

ν
]

, 0 < ν ≤ 2

Bessel ρ(h) = c1

(

2c2

h

)

ν

Γ(ν + 1)Jν

(

h
c2

)

, ν ≥ d−2
2

where Γ is the gamma function, Kν is the modified Bessel function
of the third kind with degree ν and Jν is the Bessel function of
order ν.

c1 is the sill parameter, 0 < c1 ≤ 1

c2 is the range parameter, c2 > 0

ν is the smooth parameter
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Plotting covariance functions

Example (File covariance.R)
covariance(sill = 1, range = 1, smooth = 1, cov.mod = "whitmat",

xlim = c(0, 10), ylim = c(-.2, 1))

covariance(sill = 1, range = 1, smooth = 1, cov.mod = "cauchy",

add = TRUE, col = 2, xlim = c(0, 10), ylim = c(-.2, 1))

covariance(sill = 1, range = 1, smooth = 1, cov.mod = "powexp",

add = TRUE, col = 3, xlim = c(0, 10), ylim = c(-.2, 1))

covariance(sill = 1, range = 1, smooth = 1, cov.mod = "bessel",

add = TRUE, col = 4, xlim = c(0, 10), ylim = c(-.2, 1))

legend("topright", c("Whittle-Matern", "Cauchy", "Pow. Exp.", "Bessel"),

lty = 1, col = 1:4, inset = 0.05)
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Simulation Algorithms
◮ Remind Schlather’s representation of max-stable processes
◮ It involves the maximum over an infinite number of random

processes replications - ouch!!!

Theorem (Schlather (2002))

Let Π be a P.P., dΛ(y , ξ) = ξ−2dydξ. Assume that Y is uniformly
bounded by C ∈ (0,+∞) and has support in the ball b(o, r),
r < +∞. Let B be a compact set, Yi be i.i.d. replications of Y ,
Ui be i.i.d. uniformly distributed on Br = ∪x∈Bb(x , r), ξi be i.i.d.
standard exponential r.v. and Π, Yi , ξi , Ui be mutually
independent. Then, on B,

Z∗(x) = |Br | sup

{

Yi(x − Ui)
∑i

k=1 ξk
: i = 1, . . . ,m

}

where m is such that C
Pm

k=1 ξk
≤ max1≤i≤m

Yi (x−Ui )
Pi

k=1 ξk

, equals Z (·)

almost surely.
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◮ The beauty of the previous theorem is that we only have to
take the maximum over m replications, m being finite!!!

◮ The function rmaxstab uses this algorithm to generate
max-stable random fields

Example (File: simMaxStab.R)
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Figure: Ouput of simMaxStab.R
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Comments on rmaxstab and grid locations

◮ Simulation from the Smith model is pretty fast

◮ Simulation from the Schlather model isn’t (turning bands)

◮ I’ll try to improve it → circulant embedding method

◮ For large grids, you should prefer using the RandomFields
package

Example (RandomFields package)

x <- seq(0, 10, length = 200)

y <- x

data <- MaxStableRF(x, y, grid=TRUE, model="wh",

param=c(0,1,0,1, 1),

maxstable="extr", n = 1)

data <- t(data)

image(x, y, sqrt(data), col = terrain.colors(30))
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◮ For stationary gaussian processes, the variogram is useful to
assess how evolves dependence in space

γ(x1 − x2) =
1

2
Var [Y (x1) − Y (x2)] = σ2 {1 − ρ(x1 − x2)}

◮ For extreme observations, the variance (and even the mean)
might be infinite

◮ There’s a pressing need to know how evolves the spatial
dependence of extremes

◮ The extremal coefficient function is what we need
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Extremal coefficient function
◮ Let Z (·) be a stationary max-stable random field with unit

Fréchet margins.
◮ The extremal coefficient function θ(·) is defined by

Pr [Z (x1) ≤ z ,Z (x2) ≤ z ] = exp

{

−
θ(x1 − x2)

z

}

◮ If the random field is isotropic, this simplifies to

θ(h) = θ(||x1 − x2||),

where h is the euclidean distance between x1 and x2.
◮ θ(h) = 1 is equivalent to complete dependence as

Pr[Z (x1) ≤ z ,Z (x2) ≤ z ] = exp(−1/z) = Pr[Z (x1) ≤ z ]

◮ θ(h) = 2 is equivalent to independence as

Pr[Z (x1) ≤ z ,Z (x2) ≤ z ] = exp(−2/z)

= Pr[Z (x1) ≤ z ] Pr[Z (x2) ≤ z ]
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The fitextcoeff function
◮ Smith [1990] and Schlather and Tawn [2003] proposed two

estimators for θ(hij), where hij is the euclidean distance
between locations xi and xj .

◮ These estimators are implemented in the fitextcoeff function

Example (file extCoeff.R)
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Figure: Pairwise extremal coefficient estimates and lowess curves. Left:
Smith. Right: Schlather (Whittle-Matérn). 17/47



Variogram based approaches

◮ Cooley, Guillou, Naveau and Poncet proposed variogram
based approaches especially designed for extremes

◮ The madogram [Matheron, 1987] is

ν(x1 − x2) = E[|Z (x1) − Z (x2)|]

◮ As stated earlier, the mean might be infinite

◮ Cooley et al. proposed modified madograms. For instance,
the F -madogram

νF (x1 − x2) =
1

2
E[|F{Z (x1)} − F{Z (x2)}|]

where Z (·) is a stationary max-stable random field with unit
Fréchet margins and F (z) = exp(−1/z).

◮ Hence F{Z (x1)} ∼ U(0, 1) and the F -madogram is well
defined
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Connections with the Extremal Coefficient
◮ It is not hard to show that

θ(x1 − x2) =
1 + 2νF (x1 − x2)

1 − 2νF (x1 − x2)

Example (file madogram.R)
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Connections with the Extremal Coefficient
◮ It is not hard to show that

θ(x1 − x2) =
1 + 2νF (x1 − x2)

1 − 2νF (x1 − x2)

Example (file madogram.R)
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λ-madogram

◮ θ(·) doesn’t fully characterise the spatial dependence - only
Pr[Z (x1) ≤ z ,Z (x2) ≤ z ]

◮ Naveau et al [2009] introduce the λ-madogram as follows

νλ(x1−x2) =
1

2
E[|Fλ{Z (x1)}−F 1−λ{Z (x2)}|], 0 ≤ λ ≤ 1

◮ The idea is to consider Pr[Z (x1) ≤ z1,Z (x2) ≤ z2] where
z1 = λz and z2 = (1 − λ)z .

◮ It is not hard to show that

νλ(x1 − x2) =
Vx1,x2(λ, 1 − λ)

1 + Vx1,x2(λ, 1 − λ)
−

3

(1 + λ)(2 − λ)

where Pr[Z (x1) ≤ z1,Z (x2) ≤ z2] = exp{−Vx1,x2(z1, z2)}.

◮ Remark: The F -madogram is somehow similar to the
λ-madogram when λ = 0.5
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λ-madogram (2)

◮ The λ-madogram is a really nice tool

◮ It’s not easy how to interpret it though

Example (File lmadogram.R)

Figure: λ-madogram (left) and its binned version (right).
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Why is it so difficult?

◮ So far, we haven’t talk too much about parametric models

◮ It is almost impossible to get analytical CDF for these models

◮ Indeed as Z (x) = maxi ξiY
+
i (x), Y +

i (x) = max{0,Yi (x)}

◮ Hence to get the k-variate CDF we need to compute

F (z1, . . . , zk) = Pr[max
i
ξiY

+
i (xj) ≤ zj , j = 1, . . . , k]

= Pr

[

ξi ≤
zj

Y +
i (xj)

,∀i , j = 1, . . . , k

]

= exp

{

−

∫

Rd

∫

R

I

(

ξ ≤ min
j

zj

Y +(xj )

)

ξ−2dξdP{Y (·)}

}

= exp

{

−

∫

Rd

max
j

Y +(xj)

zj
dP{Y (·)}

}

◮ The number of possible cases becomes quickly intractable
when k gets large
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Least Squares
◮ This led Smith [1990] to use least squares
◮ Find ψ minimizing

C (ψ) =
∑

i<j

(

θ(xi − xj) − θ̃(xi − xj)

s{θ̃(xi − xj)}

)2

Example (File leastSquares.R)
Estimator: Least Square

Model: Schlather

Objective Value: 1025.681

Covariance Family: Powered Exponential

Estimates

Marginal Parameters:

Assuming unit Frechet.

Dependence Parameters:

sill range smooth

1.000 1.612 1.129

Optimization Information

Convergence: successful

Function Evaluations: 172
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Maximum pairwise likelihood estimator

◮ As already stated the k-variate densities aren’t analytically
known

◮ One can maximise pairwise likelihood instead of full likelihood

ℓp(z;ψ) =
∑

i<j

n
∑

k=1

log f (z
(i)
k , z

(j)
k ;ψ)

◮ The MPLE ψ̂p shares similar properties with the MLE

ψ̂p
·
∼ N

(

ψ,H(ψ)−1J(ψ)H(ψ)−1
)

where H(ψ) = E[∇2ℓp(ψ;Z)] and J(ψ) = Var[∇ℓp(ψ;Z)] and
the expectations are w.r.t. the “full” density.
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Maximum pairwise likelihood estimator (2)

Example (File pairwise.R)
Estimator: MPLE

Model: Schlather

Pair. Deviance: 964496.2

TIC: 964808.7

Covariance Family: Powered Exponential

Estimates

Marginal Parameters:

Assuming unit Frechet.

Dependence Parameters:

sill range smooth

0.9777 1.8524 0.5953

Standard Error Type: score

Standard Errors

sill range smooth

0.2393 0.6415 0.2629

Asymptotic Variance Covariance

sill range smooth

sill 0.05726 -0.13735 -0.06208

range -0.13735 0.41152 0.14204

smooth -0.06208 0.14204 0.06910

Optimization Information

Convergence: successful

Function Evaluations: 60

Estimator: MPLE

Model: Smith

Pair. Deviance: 996556.5

TIC: 996682.5

Covariance Family: Gaussian

Estimates

Marginal Parameters:

Not estimated.

Dependence Parameters:

cov11 cov12 cov22

0.9063 0.3624 3.2020

Standard Error Type: score

Standard Errors

cov11 cov12 cov22

0.06922 0.09537 0.27087

Asymptotic Variance Covariance

cov11 cov12 cov22

cov11 0.004791 0.002209 0.003831

cov12 0.002209 0.009095 0.006482

cov22 0.003831 0.006482 0.073370

Optimization Information

Convergence: successful

Function Evaluations: 56
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◮ The use of the MPLE enables us to “easily” perform model
selection such as AIC, likelihood ratio tests

◮ One has to pay attention that we now deal with misspecified
models i.e. we use pairwise likelihood instead of full likelihood
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Takeuchi Information Criterion
◮ Recall that AIC = −2{ℓ(ψ̂) − p}, where p = dim(ψ)
◮ In presence of misspecification, the use of AIC is not justified

as the second Bartlett idendity is not satisfied i.e.

E[∇2ℓp(ψ;Z)] + Var[∇ℓp(ψ;Z)] 6= 0

◮ One should prefer the TIC

TIC = −2ℓp(ψ̂p) − 2tr
{

J(ψ̂p)H(ψ̂p)−1
}

◮ AIC is just a special case of TIC where the second Bartlett
idendity holds i.e.

J(ψ)H(ψ)−1 = −Idp =⇒ TIC = AIC, Idp = p×p id. matrix

Example (file TIC.R)

TIC(M0, M1)

M0 M1

1022201 1022257
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Likelihood ratio test under misspecification

◮ Recall that the likelihood ratio test is based on

2
{

ℓ(ψ̂) − ℓ(κ0, φ̂κ0)
}

−→ χ2
p, n → +∞

where ψ = (κ, φ), φ̂κ0 is the MLE under the restriction
κ = κ0 and p = dim(κ)

◮ In presence of misspecification, this result slightly differs

2
{

ℓp(ψ̂ − p) − ℓp(κ0, φ̂κ0)
}

−→

p
∑

i=1

λiXi , n → +∞

where the λis are the eigenvalues of

(H−1JH−1)κ{−(H−1)κ}
−1 and Xi

iid
∼ χ2

1
◮ There exist two different ways to perform model selection

RJ Approximate the distribution of
∑p

i=1 λiXi [Rotnitzki and
Jewell, 1990]

CB Adjust ℓp(·) to have the appropriate curvature [Chandler and
Bate, 2007]
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Likelihood ratio test under misspecification (2)
◮ Rotnitzki and Jewell suggest

2p
{

ℓp(ψ̂p) − ℓp(κ0, φ̂κ0)
}

∼ χ2
p

but this is only an approximation that matches only the first
moment

◮ Chandler and Bate suggest replacing ℓp(·) by

ℓA(ψ) = ℓp(ψ∗), ψ∗ = ψ̂p + M−1MA(ψ − ψ̂p)

where MMT = H and MAMT
A = H−1JH−1

so that ℓA(ψ̂p) has the appropriate curvature H−1JH−1

Example (file likratiotest.R)
anova(M0, M1)

Eigenvalue(s):

7.47

Analysis of Variance Table

MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M0 2 1036388

M1 3 1036369 1 19.082 0.1100

anova(M0, M1, method = "CB")

Analysis of Variance Table

MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M0 2 111027

M1 3 111025 1 1.5569 0.2121
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◮ So far only max-stable processes with unit Fréchet margins
were considered

◮ For real world analysis, the unit Fréchet assumption is too
restrictive

◮ We need a more flexible inferential procedure

◮ The MPLE, as we will see later, is perfectly adapted for this

◮ A first idea consists in transforming data to the unit Fréchet
scale i.e.

Z (xi) = −
1

log Fxi
{Y (xi)}

where Fx(·) is either the empirical CDF or any appropriate
CDF

◮ Then fit max-stable processes as before

◮ But this is not satisfactory as
• predictions at ungauged locations won’t be possible
• standard errors will be underestimated as we suppose that our

data were originally unit Fréchet
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How do we allow for unknown GEV margins?
◮ To transform GEV data to the unit Fréchet scale we need the

mapping

t : Y (x) 7→

(

1 + ξ(x)
Y (x) − µ(x)

σ(x)

)1/ξ(x)

◮ Hence

Pr[Y (x1) ≤ y1,Y (x2) ≤ y2] = Pr[Z (x1) ≤ t(y1),Z (x2) ≤ t(y2)]

◮ And the log-pairwise likelihood becomes

ℓp(y ;ψ) =
∑

i<j

n
∑

k=1

[

log f {t(y
(i)
k ), t(y

(j)
k );ψ} + log |J(y

(i)
k )J(y

(j)
k )|

]

where |J(y
(i)
k )| is the jacobian of the mapping t i.e.

|J(y
(i)
k )| =

1

σ(xi )

(

1 + ξ(xi )
y

(i)
k − µ(xi )

σ(xi )

)1/ξ(xi )−1
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Dimensional curse
◮ Fitting one GEV to each location will lead to 3K + p

parameters to be estimated
◮ We thus need response surfaces on the GEV parameters to get

more parsimonious models

µ = Xµβµ, σ = Xσβσ, ξ = Xξβξ

◮ The current trend surfaces implemented are linear models and
p-splines with radial basis functions

Example (File fitmaxstab.R)
Estimator: MPLE

Model: Schlather

Pair. Deviance: 2589198

TIC: NA

Covariance Family: Powered Exponential

Estimates

Marginal Parameters:

Location Parameters:

locCoeff1 locCoeff2

-10.722 2.229

Scale Parameters:

scaleCoeff1 scaleCoeff2 scaleCoeff3

4.139 2.060 1.042

Shape Parameters:

shapeCoeff1

0.275

Dependence Parameters:

sill range smooth

0.9990 1.4927 0.6946

Optimization Information

Convergence: successful

Function Evaluations: 327
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◮ Once we have fitted our max-stable process

◮ One often want to check if our model is appropriate or not

◮ This amounts to check if

1. The margins are appropriately modelled
2. The spatial dependence structure is satisfactory

◮ This can be done through two different functions

1. qqgev
2. madogram, fmadogram
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Checking the margins

◮ The idea is to check if the GEV parameters predicted by the
trend surfaces are relevant

◮ For this we will compare them to the GEV MLE at each
location

Example (File modelCheck.R)
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Figure: Checking the margins using the qqgev function.
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Checking the spatial dependence parameters
◮ The idea is to check if the model is able to reproduce the

spatial dependence structure
◮ This is done by comparing semi-parametric estimates for the

extremal coefficients and the ones predicted from the model

Example (File modelCheck.R)
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Figure: Checking the spatial dependence structure using the fmadogram
function.
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◮ Knowing the spatial dependence structure is not enough

◮ Sonner or later, one will be interested in prediction

◮ We will see how it is possible to get prediction at ungauged
locations

◮ Currently, there are two possible types of predictions

1. Pointwise predictions
2. Conditional predictions

◮ This is achieved with the following functions

1. predict, map
2. condmap
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Pointwise quantile

◮ As we fit trend surfaces for each GEV parameters, it is
possible to know the distribution of extreme for each
coordinates within the region

◮ The return level with return period T -year is

zT (x) = µ(x) + σ(x)
{− log(1 − 1/T )}−ξ(x) − 1

ξ(x)

◮ This is the level which is expected to be exceeded once every
T -year

Example (File predict.R)

predict(fitted, new.coord, ret.per = 50)

lon lat loc scale shape Q50

1 4.399032 8.202387 -0.9648912 43.11199 0.2473414 282.2889

2 3.392812 2.442806 -3.0530930 22.96123 0.2473414 147.8065

3 4.278938 3.011325 -1.2141221 31.52409 0.2473414 205.9050
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Maps of pointwise estimates

◮ The map function produces maps for the GEV parameters as
well as return levels.
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Figure: Maps of the pointwise estimates for the location, scale and
20-year return level.
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Maps of conditional quantiles
◮ A conditional return level is defined as follows

Pr[Z (x2) ≥ z2|Z (x1) ≥ z1] =
1

T2
, Pr[Z (x1) ≥ z1] = 1 −

1

T1

Example (File predict.R)
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Conclusion
◮ Max-stable processes are asymptotically justified models for

spatial extremes

◮ The SpatialExtremes provides functions to fit and analyse
max-stable processes to spatial extremes

◮ I hope you will find it useful

Weak points

◮ The package is currently in intensive development - some bugs
might (well almost surely) exist

◮ The optimisation might fail for complex data - need more
robust optimisation. Double check your estimates!

◮ Computing the asymptotic covariance matrix is unstable too -
finite difference may fail

◮ Other max-stable models will be available soon

◮ Other approaches for spatial extremes modelling are needed
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◮ If you need more details, a package vignette has been written

◮ You can have a look by invoking
vignette(“SpatialExtremesGuide”)

◮ You can also have a look at its web page

http://spatialextremes.r-forge.r-project.org/

THANK YOU FOR YOUR ATTENTION!
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