Accounting for Imperfect Detection and Survey Bias in Statistical Analysis of Presence-only Data

Robert M. Dorazio

Southeast Ecological Science Center, U.S. Geological Survey,
Gainesville, FL 32653

2014 Graybill/ENVR Conference
Fort Collins, Colorado
08 Sep 2014
Definition: A SDM expresses a functional relationship between the occurrence or abundance of a species and one or more aspects of its environment.

Uses: Many!

- Predicting the geographic distribution of a species over its potential range
- Predicting consequences of management actions (e.g., habitat restoration) on a species’ distribution

Limitations: Many!

- No dynamics (animal movements, plant dispersals)
- No interactions within or among species
Estimating SDMs From Planned Surveys

Presence-absence surveys
- Binary-regression modeling
- Occupancy modeling

Abundance surveys
- Poisson-regression modeling
- N-mixture modeling

Georgia, USA
Planned vs. Opportunistic Surveys
Nonindigenous aquatic species in Georgia, USA
Estimating SDMs From Opportunistic Surveys

Source: Web of Science using “presence-only data”

Dorazio (USGS) Presence-only data 08 Sep 2014
Presence-background models

- Binary regressions
- Case-augmented binary regressions (Lee et al., 2006; Lele and Keim, 2006)
- Maximum entropy (Phillips et al., 2006; Elith et al., 2010)
- Spatial point processes (Warton and Shepherd, 2010)
Poisson Process as a SDM

Conceptual unification

- asymptotic equivalence of estimators
 - CA-binary regressions modified for spatial resolution (Dorazio, 2012)
 - Maxent models (Renner and Warton, 2013)
- parameters are invariant to spatial scale

Potential sources of bias

- imperfect detectability (Dorazio, 2012; Lahoz-Monfort et al., 2014)
- opportunistic sampling (Phillips et al., 2009; Yackulic et al., 2013)
 - location-dependent thinning of process helps in some cases
 (Chakraborty et al., 2011; Fithian and Hastie, 2013)
Hierarchical Modeling of Opportunistic and Planned Survey Data

Spatial point process

Latent

s_1, s_2, \ldots, s_n

n_1, n_2, \ldots, n_K

Observed

y_1, y_2, \ldots, y_m

$m < n$

y_1, y_2, \ldots, y_K
Poisson Process as a SDM

Definitions

Spatial domain: $B \subset \mathbb{R}^2$

Individual activity center: $s \in B$

First-order intensity function: $\lambda(s) = \exp(\beta' x(s))$

Assumptions

- $N(B) \sim \text{Poisson}(\mu(B))$, where $\mu(B) = \int_B \lambda(s) \, ds$
- $f(s_1, s_2, \ldots, s_n | N(B) = n) = \prod_{i=1}^n \lambda(s_i) / \mu(B)$

Latent state variables

- $g(s_1, s_2, \ldots, s_n, n) = \frac{\exp\{-\mu(B)\}}{n!} \prod_{i=1}^n \lambda(s_i)$
- $N(C_k) \sim \text{Poisson}(\mu(C_k))$

where $C_1 \cup \cdots \cup C_K = B$
Detections of Individuals in Opportunistic Surveys

Assumptions

- Each individual is detected independently with probability $p(s)$:
 \[Y|s \sim \text{Bernoulli}(p(s)) \]
- $p(s)$ depends on an observer’s detection ability and choice of survey location:
 \[\logit(p(s)) = \alpha' w(s) \]

Observations

- $m =$ number of individuals detected in B
- $(s_1, \ldots, s_m) =$ locations of detected individuals

\[
L(\beta, \alpha) = \frac{\exp\{-\nu(B)\}}{m!} \prod_{i=1}^{m} \lambda(s_i) p(s_i)
\]

where \(\nu(B) = \int_{B} \lambda(s)p(s) \, ds = E(M(B)) \)
Detections of Individuals in Planned Surveys

Assumptions

- Only individuals whose activity centers lie within sample unit C_k are available to be detected.
- Each individual is detected with probability p_{kj} during the jth survey of unit C_k:
 \[
 \text{logit}(p_{kj}) = \gamma' \nu(C_k)
 \]

Observations (e.g., J_k replicate counts)

- $Y_{kj} | N(C_k) = n_k \sim \text{Binomial}(n_k, p_{kj})$

\[
L(\beta, \gamma) = \prod_{k=1}^{K} \sum_{n_k = \max(y_k)}^{\infty} \frac{\exp\{-\mu(C_k)\}\mu(C_k)^{n_k}}{n_k!} \prod_{j=1}^{J_k} \binom{n_k}{y_{kj}} p_{kj}^{y_{kj}} (1 - p_{kj})^{n_k - y_{kj}}
\]
Information in Opportunistic Surveys Can Be Limited

\[
\log\{L(\beta, \alpha)\} = - \int_B \lambda(s)p(s) \, ds + \sum_{i=1}^{m} \log\{\lambda(s_i) p(s_i)\}
\]

where

\[
\lambda(s)p(s) = \frac{\exp\{\beta' x(s) + \alpha' w(s)\}}{1 + \exp\{\alpha' w(s)\}}
\]

Identifiability problems:

1. If \(p(s) = p, \beta_0 \) and \(\alpha_0 \) are not identified.
2. If \(p(s) \) is low \(\forall s \), \(\lambda(s)p(s) = \exp\{\beta' x(s) + \alpha' w(s)\} \)
 - \(\beta_0 \) and \(\alpha_0 \) are not identified
 - other elements of \(\beta \) and \(\alpha \) are not identified if \(x \) and \(w \) are linearly dependent
3. If Fisher information matrix \(I(\theta) \) is less than full rank, the parameters in \(\theta = (\beta', \alpha')' \) are not identified (Bowden, 1973).
Two models

\[
\log(\lambda(s)) = \\
\log(8000) + 0.5x(s)
\]

1. \[
\text{logit}(p(s)) = \\
\alpha_0 - 1.0w(s)
\]

2. \[
\text{logit}(p(s)) = \\
\alpha_0 - 1.0x(s)
\]
Using Planned Surveys To Overcome Limited Information in Opportunistic Surveys

\[L(\beta, \alpha, \gamma) = L(\beta, \alpha) \times L(\beta, \gamma) \]

- partition \(B \) into sample units
- select \(K \) units randomly
- conduct \(J > 1 \) replicate surveys in each unit

Two models

\[\log(\lambda(s)) = \log(8000) + 0.5 \cdot x(s) \]

1. \[\logit(p(s)) = -1.0 - 1.0 \cdot w(s) \]
 \[\logit(p_{kj}) = 0.0 - 1.0 \cdot v(C_k) \]
 where \(v(C) = \int_C w(s) ds \)

2. \[\logit(p(s)) = -1.0 - 1.0 \cdot x(s) \]
 \[\logit(p_{kj}) = 0.0 - 1.0 \cdot v(C_k) \]
 where \(v(C) = \int_C x(s) ds \)
Abundance (covariate x)

Detections (covariate w)

Detections (covariate x)
Simulation Results: Detection covariate w

Bias

$\hat{\beta}_0$

$\hat{\beta}_1$

Std. Deviation

Number of sample units

Dorazio (USGS)
Simulation Results: Detection covariate x

<table>
<thead>
<tr>
<th>Number of sample units</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>0.45</td>
</tr>
<tr>
<td>400</td>
<td>0.4</td>
</tr>
<tr>
<td>600</td>
<td>0.35</td>
</tr>
<tr>
<td>800</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of sample units</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.3</td>
</tr>
<tr>
<td>200</td>
<td>-0.25</td>
</tr>
<tr>
<td>400</td>
<td>-0.2</td>
</tr>
<tr>
<td>600</td>
<td>-0.15</td>
</tr>
<tr>
<td>800</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of sample units</th>
<th>β_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>200</td>
<td>-0.05</td>
</tr>
<tr>
<td>400</td>
<td>0.0</td>
</tr>
<tr>
<td>600</td>
<td>0.05</td>
</tr>
<tr>
<td>800</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of sample units</th>
<th>β_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>200</td>
<td>-0.1</td>
</tr>
<tr>
<td>400</td>
<td>0.0</td>
</tr>
<tr>
<td>600</td>
<td>0.1</td>
</tr>
<tr>
<td>800</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Dorazio (USGS)

Presence-only data

08 Sep 2014
1. Bias in estimates of SDMs induced by detection errors or survey bias can be reduced or eliminated using a joint analysis of data collected in opportunistic and planned surveys.

2. This approach is widely applicable because a variety of sampling protocols can be used in planned surveys.
 - double observers
 - removals
 - capture-recapture
 - occupancy (presence-absence sampling with replicates)

3. Spatial point processes are formulated at the level of an individual; therefore, extensions of the Poisson process can be developed to
 - specify effects of biological interactions between individuals
 - predict changes in spatial distribution driven by changes in climate, habitat, non-indigenous species, etc.
Acknowledgments

Funding: ● South Atlantic Landscape Conservation Cooperative (Agreement No. 4500038932)
● USGS, Southeast Ecological Science Center

Reviewers: ● N. Zimmermann
● C. Yackulic

Fisher Information Matrix

\[I(\beta, \alpha) = \begin{pmatrix} I(\beta, \beta) & I(\beta, \alpha) \\ I(\beta, \alpha)' & I(\alpha, \alpha) \end{pmatrix} \]

The \(p, q \)-th element for each of these submatrices is:

\[
I(\beta_p, \beta_q) = \int_B x_p(s) x_q(s) \lambda(s) p(s) \, ds
\]

\[
I(\beta_p, \alpha_q) = \int_B x_p(s) w_q(s) \lambda(s) p(s) \{1 - p(s)\} \, ds
\]

\[
I(\alpha_p, \alpha_q) = \int_B w_p(s) w_q(s) \lambda(s) p(s) \{1 - p(s)\}^3 \left[1 - \exp\{2\eta(s)\}\right] \, ds
\]

\[
+ \int_B w_p(s) w_q(s) \lambda(s) p(s)^2 \{1 - p(s)\} \, ds
\]

where \(\eta(s) = \logit\{p(s)\} \).

