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a b s t r a c t

Economic and financial data often take the formof a collection of curves observed consecutively over time.
Examples include, intraday price curves, yield and term structure curves, and intraday volatility curves.
Such curves can be viewed as a time series of functions. A fundamental issue that must be addressed,
before an attempt is made to statistically model such data, is whether these curves, perhaps suitably
transformed, forma stationary functional time series. This paper formalizes the assumption of stationarity
in the context of functional time series and proposes several procedures to test the null hypothesis of
stationarity. The tests are nontrivial extensions of the broadly used tests in the KPSS family. The properties
of the tests under several alternatives, including change-point and I(1), are studied, and new insights,
present only in the functional setting are uncovered. The theory is illustrated by a small simulation study
and an application to intraday price curves.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the last two decades, functional data analysis has become
an important and steadily growing area of statistics. Very early
on, major applications and theoretical developments pertained to
functions observed consecutively over time, for example one func-
tion per day, or one function per year, with many of these data
sets arising in econometric research. The main model employed
for such series has been the functional autoregressive model of
order one, which has received a great deal of attention, see Bosq
(2000), Antoniadis and Sapatinas (2003), Antoniadis et al. (2006)
and Kargin and Onatski (2008), among many others. More recent
research has considered functional time series which have non-
linear dependence structure, see Hörmann and Kokoszka (2010),
Gabrys et al. (2010), Horváth et al. (2013), Hörmann et al. (2013),
as well as the review of Hörmann and Kokoszka (2012) and Chap-
ter 16 of Horváth and Kokoszka (2012). As in traditional (scalar and
vector) time series analysis, the underlying assumption for infer-
ence in suchmodels is stationarity. Stationarity is also required for
functional dynamic regression models like those studied by Hays
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et al. (2012) and Kokoszka et al. (2013), for bootstrap and resam-
pling methods for functional time series, see McMurry and Politis
(2010) and for the functional analysis of volatility, see Müller et al.
(2011).

Testing stationarity received due attention as soon as funda-
mental time series modeling principles have emerged. Early work
includes Grenander and Rosenblatt (1957), Granger and Hatanaka
(1964) and Priestley and Subba Rao (1969). The methods consid-
ered by these authors rest on the spectral analysis which dom-
inated the field of time series analysis at that time. While such
approaches remain useful, see Dwivedi and Subba Rao (2011), the
spectral analysis of nonstationary functional time series has not
been developed to a point where usable extensions could be read-
ily derived. We note however the recent work of Panaretos and
Tavakoli (2013a), Panaretos and Tavakoli (2013b) and Hörmann
et al. (2013) who advance the spectral analysis of stationary func-
tional time series.

We follow a time domain approach introduced in the seminal
paper of Kwiatkowski et al. (1992) which is now firmly established
in econometric theory and practice, and has been extended in
many directions. The work of Kwiatkowski et al. (1992) was
motivated by the fact that unit root tests developed by Dickey
and Fuller (1979), Dickey and Fuller (1981), and Said and Dickey
(1984) indicated that most aggregate economic series had a unit
root. In these tests, the null hypothesis is that the series has a unit
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root. Since such tests have low power in samples of sizes occurring
in many applications, Kwiatkowski et al. (1992) proposed that
stationarity should be considered as the null hypothesis (they used
a broader definition which allowed for deterministic trends), and
the unit root should be the alternative. Rejection of the null of
stationarity could then be viewed as a convincing evidence in favor
of a unit root. Itwas soon realized that theKPSS test of Kwiatkowski
et al. (1992) has a much broader utility. For example, Lee and
Schmidt (1996) and Giraitis et al. (2003) used it to detect long
memory, with short memory as the null hypothesis. At present,
both the augmented Dickey–Fuller test and the KPSS test, as well
as its robust version of de Jong et al. (1997), are typically applied to
the same series to get a fuller picture. They are available in many
packages, including R and Matlab implementations. The work
of Lo (1991) is also very relevant to our approach. His contribution
is crucial because he showed that to obtain parameter free limit
null distributions, statistics similar to the KPSS statistic must be
normalized by the long run variance rather than by the sample
variance,which leads to these distributions only if the observations
are independent.

This paper seeks to develop a general methodology for testing
the assumption that a functional time series to be modeled is
indeed stationary and weakly dependent. Such a test should be
applied before fitting one of the known stationary models (all of
them are weakly dependent). In many cases, it will be applied to
functions transformed to remove seasonality or obvious trends,
or to model residuals. At present only CUSUM change point tests
are available for functional time series, see Berkes et al. (2009),
Horváth et al. (2010) and Zhang et al. (2011). These tests have high
power to detect abrupt changes in the stochastic structure of a
functional time series, either themean or the covariance structure.
Our objective is to developmore general tests of stationaritywhich
also have high power against integrated and other alternatives.

It is difficult to explain themain contribution of this paperwith-
out introducing the required notation, but we wish to highlight in
this paragraph the main difficulties which are encountered in the
transition from the scalar or vector to the functional case. A sta-
tionary functional time series can be represented as

Xn(t) = µ(t)+

∞
j=1


λjξjnvj(t),

where n is the time index that counts the functions (referring e.g. to
a day), and t is the (theoretically continuous) argument of each
function. The mean function µ and the functional principal com-
ponents vj are unknown deterministic functions which depend on
the stochastic structure of the series {Xn}, and which are estimated
by random functions µ̂ and v̂j. If {Xn} is not stationary, one can still
compute the estimators µ̂ and v̂j, but they will not converge to µ
or vj because these population quantities will not exist then. Thus
the use of a data driven basis system vj represents an aspect which
is not encountered in the theory of scalar or vector valued tests.
Therefore, after defining meaningful extensions to the functional
setting, we must develop a careful analysis of the behavior of the
tests under alternatives.

The paper is organized as follows. Section 2 formalizes the
null hypothesis of stationarity and weak dependence of functional
time series, introduces the tests, and explores their asymptotic
properties under the null hypothesis. In Section 3, we turn to the
behavior of the tests under several alternatives. Section 4 explains
the details of the implementation, and contains the results of a
simulation study, while Section 5 illustrates the properties of the
tests by an application to intraday price curves. Appendices A and
B contain, respectively, the proofs of the results stated in Sections 2
and 3.

2. Assumptions and test statistics

Linear functional time series, in particular functional AR(1) pro-
cesses, have the form Xn =


j Ψj(εn−j), where the εi are iid er-

ror functions, and the Ψj are bounded linear operators acting on
the space of square integrable functions. In this paper, we assume
merely that Xn = f̄ (εn, εn−1, . . .), for some, possibly nonlinear,
function f̄ . The operators Ψj or the function f̄ arise as solutions to
structural equations, very much like in the univariate econometric
modeling, see e.g. Teräsvirta et al. (2010). For the functional autore-
gressive process, the norms of the operatorsΨj decay exponentially
fast. For the more general nonlinear moving averages, the rate at
which the dependence of Xn on past errors εn−j decayswith j can be
quantified by a condition known as Lp–m–approximability stated
in assumptions (2.1)–(2.4) below. In both cases, these functional
models can be said to be in a class which is customarily referred
to as weakly dependent or short memory time series. It is conve-
nient to state the conditions for the error process, whichwe denote
by η = {ηj}

∞
−∞

, and which will be used to formulate the null and
alternative hypotheses.

Throughout the paper, L2 denotes the Hilbert space of square
integrable functions on the unit interval [0, 1]with the usual inner
product ⟨·, ·⟩ and the norm ∥ · ∥ it generates,


means

 1
0 .

η forms a sequence of Bernoulli shifts, i.e.
ηj = f (εj, εj−1, . . .) (2.1)

for some measurable function f : S∞
→ L2

and iid functions εj,−∞ < j < ∞,

with values in a measurable space S,
εj(t) = εj(t, ω) is jointly measurable in (t, ω),

− ∞ < j < ∞, (2.2)
Eη0(t) = 0 for all t , and E∥η0∥

2+δ < ∞,

for some 0 < δ < 1, (2.3)

and

the sequence {ηn}
∞

n=−∞
can be approximated by

ℓ-dependent sequences {ηn,ℓ}
∞

n=−∞
in the sense that (2.4)

∞
ℓ=1

(E||ηn − ηn,ℓ||
2+δ)1/κ < ∞ for some κ > 2 + δ,

where ηn,ℓ is defined by ηn,ℓ = g(εn, εn−1, . . . , εn−ℓ+1, ϵ
∗

n,ℓ),

ϵ∗

n,ℓ = (ε∗

n,ℓ,n−ℓ, ε
∗

n,ℓ,n−ℓ−1, . . .),where the ε∗

n,ℓ,k’s
are independent copies of ε0,
independent of {εi,−∞ < i < ∞}.

Assumptions similar to those stated above have been used ex-
tensively in recent theoretical work, as all stationary time series
models in practical use can be represented as Bernoulli shifts,
see Wu (2005), Shao and Wu (2007), Aue et al. (2009), Hörmann
and Kokoszka (2010), among many other contributions. They have
been used in econometric research even earlier, and the work
of Pötscher and Prucha (1997) contributed to their popularity.
Bernoulli shifts are stationary by construction;weak dependence is
quantified by the summability condition in (2.4) which intuitively
states that the function g decays so fast that the impact of shocks
far back in the past is so small that they can be replaced by their
independent copies, with only a small change in the distribution of
the process.

We wish to test

H0 : Xi(t) = µ(t)+ ηi(t), 1 ≤ i ≤ N, where µ ∈ L2.
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The mean function µ is unknown. The null hypothesis is that the
functional time series is stationary andweakly dependent,with the
structure of dependence quantified by conditions (2.1)–(2.4).

The most general alternative is that H0 does not hold, but some
profound insights into the behavior of the tests can be obtained by
considering some specific alternatives. We focus on the following.
Change point alternative:

HA,1 : Xi(t) = µ(t)+ δ(t)I{i > k∗
} + ηi(t), 1 ≤ i ≤ N,

with some integer 1 ≤ k∗ < N.

The mean function µ(t), the size of the change δ(t), and the time
of the change, k∗, are all unknown parameters.We assume that the
change occurs away from the end points, i.e.

k∗
= ⌊Nτ⌋ with some 0 < τ < 1. (2.5)

Integrated alternative:

HA,2 : Xi(t) = µ(t)+

i
ℓ=1

ηℓ(t), 1 ≤ i ≤ N.

Deterministic trend alternative:

HA,3 : Xi(t) = µ(t)+ g(i/N)δ(t)+ ηi(t), 1 ≤ i ≤ N (2.6)

where

g(t) is a piecewise Lipschitz continuous function on [0, 1]. (2.7)

The trend alternative includes various change point alternatives,
including HA,1, but also those in which change can be gradual. It
also includes the polynomial trend alternative, if g(u) = uα .

We emphasize that both under the null hypothesis and all
alternatives, the mean function µ(t) is unknown.

The tests we propose can be shown to be consistent against
any other sufficiently large departures from stationarity and weak
dependence. In particular, functional long memory alternatives
could be considered as well, as studied in the scalar case by Giraitis
et al. (2003). Since long memory functional processes have not
been considered in any applications yet, we do not pursue this
direction at this point.

In the remainder of this section,we consider two classes of tests,
those based on the curves themselves, and those based on the finite
dimensional projections of the curves on the functional principal
components. As will become clear, the tests of the two types are
related.

2.1. Fully functional tests

Our approach is based on two tests statistics. The first is

TN =


Z2
N(x, t)dtdx,

where

ZN(x, t) = SN(x, t)− xSN(1, t), 0 ≤ x, t ≤ 1,

with

SN(x, t) = N−1/2
⌊Nx⌋
i=1

Xi(t), 0 ≤ x, t ≤ 1.

The second test statistic is

MN = TN −

 
ZN(x, t)dx

2

dt

=

 
ZN(x, t)−


ZN(y, t)dy

2

dxdt.

If Xi(t) = Xi, i.e. if the data are scalars (or constant functions
on [0, 1]), the statistic TN is the numerator of the KPSS statistic

of Kwiatkowski et al. (1992), and MN is the numerator of the V/S
statistic of Giraitis et al. (2003)who introduced centering to reduce
the variability of the KPSS statistic and to increase power against
‘‘changes in variance’’ which are a characteristic of long memory
in volatility. As pointed out by Lo (1991), to obtain parameter free
limits under the null, statistics of this type must be divided by the
long run variance.We now proceedwith the suitable definitions in
the functional case.

The null limit distributions of TN and MN depend on the eigen-
values of the long-run covariance function of the errors:

C(t, s) = Eη0(t)η0(s)+

∞
ℓ=1

Eη0(t)ηℓ(s)+

∞
ℓ=1

Eη0(s)ηℓ(t). (2.8)

It is proven in Horváth et al. (2013) that the series in (2.8) is con-
vergent in L2. The function C(t, s) is positive definite, and there-
fore there exist λ1 ≥ λ2 ≥ · · · ≥ 0 and orthonormal functions
ϕi(t), 0 ≤ t ≤ 1, satisfying

λiϕi(t) =


C(t, s)ϕi(s)ds, 1 ≤ i < ∞. (2.9)

The following theorem specifies limit distributions of TN and
MN under the stationarity null hypothesis. Throughout the paper,
B1, B2, . . . are independent Brownian bridges.

Theorem 2.1. If assumptions (2.1)–(2.4) and H0 hold, then

TN
D

−→

∞
i=1

λi


B2
i (x)dx (2.10)

and

MN
D

−→

∞
i=1

λi

 
Bi(x)−


Bi(y)dy

2

dx. (2.11)

According to Theorem A.1, under assumptions (2.1)–(2.4) the
sum


∞

i=1 λi is finite, and therefore the variables T0 and M0 are
finite with probability one.

Theorem 2.1 shows, in particular, that for functional time series
a simple normalization with a long-run variance is not possible,
and approaches involving the estimation of all large eigenvalues
must be employed. The eigenvalues λ1 ≥ λ2 ≥ · · · can be easily
estimated under the null hypothesis because then

C(t, s) = cov(X0(t), X0(s))+

∞
i=1

[cov(X0(t), Xi(s))

+ cov(X0(s), Xi(t))],

so we can use the kernel estimator ĈN of Horváth et al. (2013)
defined as

ĈN(t, s) = γ̂0(t, s)+

N−1
i=1

K


i
h

 
γ̂i(t, s)+ γ̂i(s, t)


, (2.12)

where

γ̂i(t, s) =
1
N

N
j=i+1


Xj(t)− X̄N(t)

 
Xj−i(s)− X̄N(s)


with

X̄N(t) =
1
N

N
i=1

Xi(t).

The kernel K in the definition of ĈN satisfies the following condi-
tions:

K(0) = 1, (2.13)
K(u) = 0 if u > c with some c > 0, (2.14)



4 L. Horváth et al. / Journal of Econometrics ( ) –

and

K is continuous on [0, c], where c is given in (2.14). (2.15)

The window (or smoothing bandwidth) hmust satisfy only

h = h(N) → ∞ and
h(N)
N

→ 0, as N → ∞. (2.16)

Now the estimators for the eigenvalues and eigenfunctions are de-
fined by

λ̂iϕ̂i(t) =


ĈN(t, s)ϕ̂i(s)ds, 1 ≤ i ≤ N,

where λ̂1 ≥ λ̂2 ≥ · · · are the empirical eigenvalues and ϕ̂1, ϕ̂2, . . .
are the corresponding orthonormal eigenfunctions. We can thus
approximate the limits in Theorem 2.1 with
d

i=1

λ̂i


B2
i (x)dx and

d
i=1

λ̂i

 
Bi(x)−


Bi(y)dy

2

dx,

where d is suitably large. The details are presented in Section 4.We
note that the λ̂i and the ϕ̂i are consistent estimators only under H0.
Their behavior under the alternatives is complex. It is studied in
Section 3.

2.2. Tests based on projections

Theorem2.1 leads to asymptotic distributions depending on the
eigenvaluesλi, which can collectively be viewed as an analog of the
long-run variance. In this section, we will see that by projecting
on the eigenfunctions ϕ̂i it is possible to construct statistics whose
limit null distributions are parameter free. This procedure is a func-
tional analog of dividing by an estimator of the long-run variance.

To have uniquely defined (up to the sign) eigenfunctions we
assume

λ1 > λ2 > . . . λd > λd+1 > 0. (2.17)

Define

T 0
N(d) =

d
i=1

1

λ̂i


⟨ZN(x, ·), ϕ̂i⟩

2dx,

T ∗

N(d) =

d
i=1


⟨ZN(x, ·), ϕ̂i⟩

2dx,

M0
N(d) =

d
i=1

1

λ̂i

 
⟨ZN(x, ·), ϕ̂i⟩ −


⟨ZN(u, ·), ϕ̂i⟩du

2

dx

and

M∗

N(d) =

d
i=1

 
⟨ZN(x, ·), ϕ̂i⟩ −


⟨ZN(u, ·), ϕ̂i⟩du

2

dx.

Theorem 2.2. If assumptions (2.1)–(2.4), (2.13)–(2.16), (2.17) and
H0 hold, then

T 0
N(d)

D
−→

d
i=1


B2
i (x)dx, (2.18)

T ∗

N(d)
D

−→

d
i=1

λi


B2
i (x)dx, (2.19)

M0
N(d)

D
−→

d
i=1

 
Bi(x)−


Bi(u)du

2

dx (2.20)

and

M∗

N(d)
D

−→

d
i=1

λi

 
Bi(x)−


Bi(u)du

2

dx. (2.21)

It is clear that T ∗

N and M∗

N are just d-dimensional projections
of TN and MN . The distribution of the limit in (2.18) can be found
in Kiefer (1959). Critical values based on Monte Carlo simulations
are given in Table 6.1 of Horváth and Kokoszka (2012). The distri-
butions of the limits both in (2.18) and (2.20) can also be expressed
in terms of sums of squared normals, see Shorack and Wellner
(1986) and Section 4. It is also easy to derive normal approxima-
tions. By the central limit theorem we have, as d → ∞,
45
d

−1/2


d
i=1


B2
i (x)dx −

d
6


D
→ N(0, 1),

where N(0, 1) stands for a standard normal random variable. Aue
et al. (2009) demonstrated that the limit in (2.18) can be approxi-
matedwellwith normal randomvariables even formoderate d. The
limit in (2.20) can be approximated in a similarmanner, namely, as
d → ∞,
360
d

−1/2


d
i=1


B2
i (x)dx −


Bi(x)dx

2


−
d
12


D
→ N(0, 1).

3. Asymptotic behavior under alternatives

The asymptotic behavior of the KPSS and related tests under
alternatives is not completely understood, even for scalar data.
This may be due to the fact that an asymptotic analysis of power
is generally much more difficult than the theory under a null
hypothesis. Giraitis et al. (2003) studied the behavior of the
KPSS test, the R/S test of Lo (1991) and their V/S test under the
alternative of long memory. Pelagatti and Sen (2013) established
the consistency of their nonparametric version of the KPSS test
under the integrated alternative. In this section, we present an
asymptotic analysis, under alternatives, of the tests introduced in
Section 2. In the functional setting, there is a fundamentally new
aspect: convergence of a scalar estimator of the long run variance
must be replaced by the convergence of the eigenvalues and the
eigenfunctions of the long run covariance function. We derive
precise rates of convergence and limits for this function, and use
them to study the asymptotic power of the tests introduced in
Section 2. In Section 4, we will see how these asymptotic insights
manifest themselves in finite samples.

We expect that the tests introduced in Section 2 are also
consistent against suitably defined long memory alternatives.
While scalar long memory models have received a lot of attention
in recent decades, long memory functional models have not been
considered in econometric literature yet. To keep this contribution
within reasonable limits, we do not pursue this direction here.

3.1. Change in the mean alternative

To state consistency results, we assume that the jump function
is in L2, i.e.
δ2(t)dt < ∞. (3.1)

We introduce the function

δτ (x, t) = δ(t)[(x − τ)I{x ≥ τ } − x(1 − τ)] (3.2)



L. Horváth et al. / Journal of Econometrics ( ) – 5

and the Gaussian process Γ 0(x, t)with EΓ 0(x, t) = 0 and

EΓ 0(x, t)Γ 0(y, s) = (min(x, y)− xy)C(t, s).

The existence of the process Γ 0(x, t) will be established in
Appendix A.

Theorem 3.1. If assumptions (2.1)–(2.4), (2.5), (3.1) and HA,1 hold,
then

N−1/2

TN −

N
3
τ 2(1 − τ)2∥δ∥2


D

−→ 2


Γ 0(x, t)δτ (x, t)dtdx (3.3)

and

N−1/2

MN −

N
12
τ 2(1 − τ)2∥δ∥2


D

−→ 2
 

Γ 0(x, t)−


Γ 0(y, t)dy


×


δτ (x, t)−


δτ (y, t)dy


dtdx. (3.4)

It is easy to see that the limits in Theorem3.1 are zeromeannor-
mal random variables. Their variances, computed in Appendix B,
are positive if C(t, s) is strictly positive definite. In that case, TN and
MN increase like N . However, as we prove in Lemma B.2, ĈN(t, s)
does not converge to C(t, s) under HA,1, so it is not clear what the
asymptotic behavior of the critical values under HA,1 is. To show
that the asymptotic power is 1, amore delicate argument is needed,
which we now outline.

Applying Lemma B.2 with the result of Dunford and Schwartz
(1988), p. 1091, we conclude that

λ̂1

h
P

→ γA,1 = 2τ(1 − τ)∥δ∥2
 c

0
K(u)du, (3.5)

andϕ̂1(t)− ĉ1
δ(t)
∥δ∥

 = oP(1). (3.6)

According to (3.5), when we compute c̄ = c̄(h,N), the critical
value from simulated copies of

d
i=1 λ̂i


B2
i (t)dt , then c̄ increases

at most linearly with h. Therefore, using (2.16) with Theorem 3.1,
we conclude that

lim
N→∞

P{TN ≥ c̄} = 1 under HA,1. (3.7)

This shows that the test based on TN is consistent. The same
argument applies toMN .

We now turn to the tests based on projections, with the test
statistics defined in Section 2.2. As we have seen, under HA,1, the
largest empirical eigenvalue λ̂1 increases to ∞, as N → ∞, and
the corresponding empirical eigenfunction ϕ̂1 is asymptotically in
the direction of the change. This means that both T ∗

N and M∗

N are
dominated by the first term under HA,1. The precise asymptotic
behavior of all statistics introduced in Section 2.2 is described in
the following theorem.

Theorem 3.2. If assumptions (2.1)–(2.4), (2.13)–(2.16), (3.1) and
HA,1 hold, then

N−1/2

T ∗

N(1)−
N
3
τ 2(1 − τ)2⟨δ, ϕ̂1⟩

2


D
−→ 2


Γ 0(x, t)δτ (x, t)dxdt, (3.8)

N−1/2

M∗

N(1)−
N
12
τ 2(1 − τ)2⟨δ, ϕ̂1⟩

2


D
−→ 2

 
Γ 0(x, t)−


Γ 0(y, t)dy


×


δτ (x, t)−


δτ (y, t)dy


dtdx, (3.9)

h
N1/2

2τ(1 − τ)∥δ∥2
 c

0
K(u)du


T 0
N(1)

−
N

3λ̂1
τ 2(1 − τ)2⟨δ, ϕ̂1⟩

2


D
−→ 2


Γ 0(x, t)δτ (x, t)dxdt, (3.10)

and

h
N1/2

2τ(1 − τ)∥δ∥2
 c

0
K(u)du


M0

N(1)

−
N

12λ̂1
τ 2(1 − τ)2⟨δ, ϕ̂1⟩

2


D
−→ 2

 
Γ 0(x, t)−


Γ 0(y, t)dy


×


δτ (x, t)−


δτ (y, t)dy


dtdx. (3.11)

If in addition we assume that h/N1/2
→ 0 as N → ∞, then

T ∗

N(d) =
N
3
τ 2(1 − τ)2∥δ∥2(1 + oP(1)), (3.12)

M∗

N(d) =
N
12
τ 2(1 − τ)2∥δ∥2(1 + oP(1)), (3.13)

T 0
N(d) =

N
h

τ(1 − τ)

6
 c
0 K(u)du

(1 + oP(1)), (3.14)

and

M0
N(d) =

N
h

τ(1 − τ)

24
 c
0 K(u)du

(1 + oP(1)). (3.15)

Observe that according to Theorems 3.1 and 3.2, the statistics
TN and T ∗

N(1) (MN and M∗

N(1), respectively) exhibit the same
asymptotic behavior under the change point alternative. This is due
to the fact that the projection in the direction of ϕ̂1 picks up all
information on the change available in the data, as, by (3.6), ϕ̂1 is
asymptotically aligned with the direction of the change.

Remark 3.1. In the local alternative model

Xi(t) = µ(t)+ δ∗

N(t)I{i > k∗
} + ηi(t), 1 ≤ i ≤ N,

with some integer 1 ≤ k∗ < N,

where ∥δ∗

N∥ → 0 as N → ∞. We discuss briefly how the
statistic TN behaves under this model. If N1/2

∥δ∗

N∥ → 0, then TN
converges in distribution to


(Γ 0(x, t))2dtdx as is the case under

H0. On the other hand, if N1/2
∥δ∗

N∥ → ∞, then TN
P

−→ ∞ and
therefore consistency is retained. Moreover, under the additional
assumption N


C(t, s)δ∗

N(t)δ
∗

N(s)dtds → ∞ we show that

1
AN


TN −

1
N

∥βN∥
2


D
−→ N(0, 1), (3.16)
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where

A2
N = 4N


C(t, s)δ∗

N(t)δ
∗

N(s)dtds

×


(min(x, y)− xy)δ̄τ (x)δ̄τ (y)dxdy.

In the critical case when N1/2
∥δ∗

N∥ → δ∗ in L2, where δ∗ is some
non zero function, then we have

TN
D

−→ ζ +

∞
ℓ=1


λℓ∥Bℓ∥2

+ 2λ1/2ℓ ⟨Bℓ, δ̄τ ⟩⟨ϕℓ, δ∗
⟩


, (3.17)

where ζ = ∥δ̄τ∥
2
∥δ∗

∥
2, B1, B2, . . . are independent Brownian

bridges, the λi’s and ϕi’s are defined in (2.9), and

δ̄τ (x) = (x − τ)I{x ≥ τ } − x(1 − τ). (3.18)

The asymptotic behavior of MN can be studied analogously in
the local alternative change point model. The derivation of the
asymptotic properties of T 0

N(d), T
∗

N(d),M
0
N(d), and M∗

N(d) is much
more involved since it requires the study of ĈN(t, s) under this
model. Wewill not pursue this line of inquiry in the present paper.

3.2. The integrated alternative

Let

∆(x, t) =

 x

0
Γ (u, t)du − x


Γ (u, t)du, (3.19)

where Γ (x, t) is a Gaussian process with EΓ (x, t) = 0 and
EΓ (x, t)Γ (y, s) = min(x, y)C(t, s). The existence of Γ (x, t) is es-
tablished in Theorem A.1.

For the fully functional tests of Section 2.1, we have the
following result.

Theorem 3.3. If assumptions (2.1)–(2.4) and HA,2 hold, then

1
N2

TN
D

−→


∆2(x, t)dtdx (3.20)

and

1
N2

MN
D

−→

 
∆(x, t)−


∆(u, t)du

2

dtdx. (3.21)

To find the limit distributions of the statistics based on projec-
tions, we need the following theorem.

Theorem 3.4. If assumptions (2.1)–(2.4), (2.13)–(2.16) and HA,2
hold, then
1
N
ZN(x, t),

1
Nh

ĈN(t, s), 0 ≤ x, t, s ≤ 1


−→ {∆(x, t),Q (t, s), 0 ≤ x, t, s ≤ 1}

in D([0, 1] × L2), where

Q (t, s) = 2
 c

0
K(w)dw


R(z, t)R(z, s)dz,

with

R(z, t) =

 z

0
Γ (u, t)du −

  v

0
Γ (u, t)du


dv.

We show in Lemma B.5 that Q (t, s) is non-negative definite
with probability one, so there are random variables λ∗

1 ≥ λ∗

2 ≥ · · ·

and random functions ϕ∗

1 (t), ϕ
∗

2 (t), . . . satisfying

λ∗

i ϕ
∗

i (t) =


Q (t, s)ϕ∗

i (s)ds, 1 ≤ i < ∞. (3.22)

Combining Theorem 3.4 with Dunford and Schwartz (1988), we
get that
λ̂1/(Nh), λ̂2/(Nh), . . . , . . . , λ̂d/(Nh), ϕ̂1(t), ϕ̂2(t), . . . , ϕ̂d(t)


D

−→

λ∗

1, λ
∗

2, . . . , λ
∗

d, ϕ
∗

1 (t), ϕ
∗

2 (t), . . . , ϕ
∗

d (t)

.

Thus the behavior of T 0
N(d), T

∗

N(d),M
0
N(d) andM∗

N(d) is an immedi-
ate consequence of Theorem 3.4. An argument similar to that de-
veloped in Section 3.1 shows that the tests are consistent.

Theorem 3.5. If assumptions (2.1)–(2.4), (2.13)–(2.16) and HA,2
hold, then

h
N
T 0
N(d)

D
→

d
i=1

1
λ∗

i


⟨∆(x, ·), ϕ∗

i (·)⟩
2dx, (3.23)

1
N2

T ∗

N(d)
D
→

d
i=1


⟨∆(x, ·), ϕ∗

i (·)⟩
2dx, (3.24)

h
N
M0

N(d)
D
→

d
i=1

1
λ∗

i

 
⟨∆(x, ·), ϕ∗

i (·)⟩

−


⟨∆(u, ·), ϕ∗

i (·)⟩du
2

dx, (3.25)

and
1
N2

M∗

N(d)

D
→

d
i=1

 
⟨∆(x, ·), ϕ∗

i (·)⟩ −


⟨∆(u, ·), ϕ∗

i (·)⟩du
2

dx. (3.26)

3.3. Deterministic trend alternative

Let

ḡ(x) =

 x

0
g(u)du − x


g(u)du, 0 ≤ x ≤ 1.

Theorem 3.6. If assumptions (2.1)–(2.4), (2.6), (3.1) and HA,3 hold,
then

N−1/2

TN − N∥δ∥2


ḡ2(x)dx


D

−→ 2


Γ 0(x, t)δ(t)ḡ(x)dtdx (3.27)

and

N−1/2


MN − N∥δ∥2

 
ḡ(x)−


ḡ(y)dy

2

dx


D

−→ 2
 

Γ 0(x, t)−


Γ 0(y, t)dy


×


ḡ(x)−


ḡ(y)dy


δ(t)dtdx. (3.28)
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The limits in (3.27) and (3.28) are normal randomvariableswith
zero mean and variances which can be expressed in terms of the
long run covariance kernel C(·, ·) and the functions δ and ḡ . We do
not display these complex formulas to conserve space. They extend
the formulas for the variances of the limits in Theorem 3.1 which
are given in Appendix B. The consistency of the procedures based
on projections can be established by extending the arguments used
to prove Theorem3.2, howeverwithmore abstract notation. Again,
to keep this work within reasonable limits of space, we do not
present the details.

4. Implementation and finite sample performance of the tests

4.1. Details of the implementation

To implement the tests introduced in Section 2, several issues
must be considered. The choice of the kernel K(·) and the
smoothing bandwidth h are the most obvious. Beyond that, to
implement Monte Carlo tests based on statistics whose limits
depend on the estimated eigenvalues, a fast method of calculating
replications of these limits must be employed. The issues of
bandwidth and kernel selection have been extensively studied
in the econometric literature for over three decades, we cannot
cite dozens, if not hundreds, of papers devoted to them. Perhaps
the best known contributions are those of Andrews (1991)
and Andrews and Monahan (1992) who introduced data driven
bandwidth selection and prewhitening. While these approaches
possess optimality properties in general regression models with
heteroskedastic and correlated errors, they are not optimal in all
specific applications. In particular, Jönsson (2006) found that the
finite-sample distribution of the (scalar) KPSS test statistic can be
very unstable when the Quadratic Spectral kernel (recommended
by Andrews (1991)) is used and/or a prewhitening filter is
applied. He recommends the Bartlett kernel. An elaboration on
the finite sample properties of the KPSS test with many relevant
references can be found in Jönsson (2011). Our paper focuses on
the derivation and large sample theory for the stationarity tests for
functional time series; we cannot present here a comprehensive
and conclusive study of the finite sample properties, which are
still being investigated even for scalar time series. We however
wish to offer somepractical guidance and report approacheswhich
worked well for the data generating processes we considered.

Politis (2003, 2011) argues that the flat top kernel

K(t) =

1, 0 ≤ t < 0.1
1.1 − |t|, 0.1 ≤ t < 1.1
0, |t| ≥ 1.1

(4.1)

has better properties than the Bartlett or the Parzen kernels. In our
empirical work, we used kernel (4.1). Our simulations showed that
h = N1/2 is satisfactory for our hypothesis testing problem when
the observations are independent orweakly dependent (functional
autoregressive processes). The empirical sizes and power functions
change little if h is taken ±5 lags smaller or larger. We note that
the optimal rates derived in Andrews (1991) do not apply to kernel
(4.1) because this piecewise function does not satisfy the regularity
conditions assumed by Andrews (1991). It can be shown that the
optimal rates for Bartlett and Parzen kernels remain the same in
the functional case, but the multiplicative constants depend in a
very complexway on the high ordermoments of the functions, and
the arguments Andrews (1991) used to approximate them cannot
be readily extended.

Once the kernel and the bandwidth have been selected, the
eigenvalues λ̂i can be computed. This allows us to compute the
normalized statistics T 0

N(d) and M0
N(d) and use the tests based on

the asymptotic distribution of their limits. The critical values can

be computed by using the expansions analogous to (4.2) or (4.3)
(without the λ̂i). Alternatively, since these limits do not depend on
the distribution of the data, the critical values can be obtained by
calculating a large number of replications of T 0

N(d) and M0
N(d) for

any specific functional time series. We used iid Brownian motions,
and we refer to the tests which use the critical values so obtained
as T 0

N(d)(AM) and M0
N(d)(AM) (Alternative method). This method

is extremely computationally intensive, if its performance is to be
assessed by simulations; we needed almost two months of run
time on the University of Utah Supercomputer (as of June 2013) to
obtain the empirical rejection rates for T 0

N(d)(AM) andM0
N(d)(AM)

for samples of size 100 and 250 and values of d between 1
and 10.

The limits of statistics TN and T ∗

N must be approximated by the
MC distribution of

d
i=1 λ̂i


B2
i (x)dx, and one must proceed anal-

ogously forMN andM∗

N . Using the expansions discussed in Shorack
and Wellner (1986), pp 210–211, we use the approximations

T̂d,J =

d
i=1

λ̂i

J
j=1

Z2
j

j2π2
, (4.2)

and

M̂d,J =

d
i=1

λ̂i

J
j=1

Z2
2j−1 + Z2

2j

4j2π2
, (4.3)

where {Zj}∞j=1 are iid standard normal random variables. For large
J , the sums over j approximate the integrals of the functionals of
the Brownian bridge and eliminate the need to generate its trajec-
tories and to perform numerical integration. In our work we used
J = 100, and one thousand replications to obtainMC distributions.

To select d, we use the usual ‘‘cumulative variance’’ approach
recommended by Ramsay and Silverman (2005) and Horváth and
Kokoszka (2012); d is chosen so that roughly v% of the sample
variance is explained by the first d principal components. In our
implementation, we estimated the total of 49 largest eigenvalues
(the largest number under which the estimation is numerically
stable), and used d = dv such that

λ̂1 + · · · + λ̂dv

λ̂1 + · · · + λ̂49
≈ v.

A general recommendation is to use v equal to about 90 percent,
but we report results for v = .85, .90, .95, to see how the per-
formance of the tests is affected by the choice of d. This is a new
aspect of the stationarity tests, which reflects the infinite dimen-
sional structure of the functional data, and which is absent in tests
for scalar or vector time series.

4.2. Empirical size and power

We first compare the empirical size of the tests implemented
as described above. We consider two data generating processes
(DGP’s): (1) iid copies of the Brownian motion (BM), (2) the
functional AR process of order 1 (FAR(1)). There are a large number
of stationary functional time series that could be considered. In
our small simulation study, the focus on the BM is motivated
by the application to cumulative intraday returns considered in
Section 5; they approximately look like realizations of the BM,
see Fig. 3. The FAR(1), with Brownian motion innovations, is used
to generate temporal dependence: the tests should have correct
size for general stationary functional time series, not just for iid
functions. The FAR(1) process is defined by the equation

Xi(t) =

 1

0
ψ(t, u)Xi−1(u)du + Wi(t), 0 ≤ t ≤ 1, (4.4)
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Table 1
Empirical sizes for the iid BM and FAR(1) DGP’s. We used h = N1/2 and the flat-top
kernel (4.1). The standard error is approximately 0.9% for the 10% level and 0.4% for
the 5% level.

DGP BM FAR(1)
N 100 250 100 250
Nominal 10% 5% 10% 5% 10% 5% 10% 5%

Statistics TN

v .85 13.9 5.6 13.3 5.3 12.3 4.2 11.8 4.1
.90 12.6 5.4 12.5 5.2 11.8 3.7 11.0 4.1
.95 12.7 4.6 12.0 4.9 11.3 3.6 10.4 3.7

Statistics MN

v .85 9.7 2.2 11.4 3.6 11.4 2.3 11.8 4.2
.90 8.8 1.5 10.5 3.0 9.4 1.6 11.2 4.0
.95 8.2 0.9 9.9 2.9 8.5 1.2 10.1 3.4

Statistics T ∗

N

v .85 11.3 4.9 10.8 4.6 10.2 3.4 10.3 3.7
.90 11.2 4.4 10.7 4.8 10.0 3.4 10.3 3.4
.95 11.8 4.4 11.1 4.5 10.6 3.2 10.0 3.6

Statistics M∗

N

v .85 6.3 0.7 8.8 2.6 11.0 2.1 11.2 4.2
.90 7.0 0.8 8.9 2.3 8.9 1.3 10.7 4.0
.95 6.9 0.7 8.8 2.7 8.2 1.1 10.0 3.2

Statistics T 0
N

v .85 10.4 3.8 10.3 3.9 10.1 2.8 9.2 3.3
.90 9.2 2.3 9.0 2.8 7.7 1.5 8.6 2.9
.95 4.6 0.8 7.6 1.4 5.0 0.1 7.2 1.3

Statistics M0
N

v .85 6.1 0.5 6.7 2.1 6.7 1.5 7.7 2.8
.90 4.2 0.8 5.4 1.7 5.8 1.0 7.2 2.4
.95 2.9 0.3 5.6 1.4 3.3 0.0 5.1 0.9

Statistics T 0
N (AM)

v .85 11.9 5.4 10.2 5.1 12.1 7.1 11.7 6.1
.90 10.3 5.7 9.2 4.8 11.7 7.2 9.8 4.9
.95 9.9 4.3 9.0 4.7 11.2 6.9 9.7 5.3

Statistics M0
N (AM)

v .85 8.8 5.1 10.7 4.6 12.7 7.7 10.8 5.8
.90 8.6 5.3 10.0 4.5 12.1 7.3 10.5 5.4
.95 8.5 4.7 9.8 5.2 11.9 7.1 10.6 5.4

where the Wi are independent Brownian motions on [0, 1], and
ψ is a kernel whose operator norm is not too large, the precise
condition is somewhat technical, see Bosq (2000) or Chapter
13 of Horváth and Kokoszka (2012). A sufficient condition for
a stationary solution to Eq. (4.4) to exist is that the Hilbert–
Schmidt norm of ψ be less than 1. We work with the kernel

ψ(t, s) = c exp

t2 + s2

2


with c = .3416 so that the Hilbert–Schmidt norm of ψ is approx-
imately 0.5.

We consider functional time series of length N = 100 and
N = 250. Each DGP is simulated one thousand times, and the per-
centage of rejections of the null hypothesis is reported at the sig-
nificance levels of 10% and 5%. The empirical sizes are reported in
Table 1, which leads to the following conclusions:
(1) The tests T 0

N(AM) and T 0
N(AM) have reasonably good empirical

size, which does not depend on v. Note that we used the BM
processes to obtain the critical values, so it is not surprising
good results for the BM as the DGP. However the observations
of the FAR(1) series are no longer BM’s.

(2) If the limit distribution is used to calculate the critical val-
ues, the tests based on the MC distributions (statistics TN ,MN ,
T ∗

N ,M
∗

N ) are less sensitive to the choice of the cumulative vari-
ance v.

Table 2
Empirical power for change point and I(1) alternatives. We used h = N1/2 and the
flat-top kernel (4.1).

DGP Change point I(1)
N 100 250 100 250
Nominal 10% 5% 10% 5% 10% 5% 10% 5%

Statistic TN

v .85 80.7 56.4 99.6 98.1 99.3 96.5 99.2 96.3
.90 80.1 56.6 99.5 97.6 99.4 95.8 99.2 96.1
.95 79.2 54.4 99.4 97.6 99.1 96.2 99.2 96.3

Statistic MN

v .85 50.6 14.7 95.2 84.1 93.8 68.3 97.7 92.5
.90 46.7 11.0 94.7 82.7 92.8 64.5 97.6 92.4
.95 79.2 54.4 99.4 97.6 90.9 61.4 99.2 96.3

Statistic T ∗

N

v .85 77.2 52.1 99.3 97.6 98.9 95.7 98.0 94.2
.90 77.8 54.3 99.5 97.5 99.2 95.8 98.4 95.7
.95 77.5 53.7 99.4 97.6 99.1 96.0 99.1 96.1

Statistic M∗

N

v .85 39.6 8.5 93.7 78.1 93.5 67.9 94.9 88.2
.90 39.9 7.7 93.9 79.6 92.7 63.9 96.2 89.3
.95 40.8 6.8 94.5 79.8 90.5 61.2 96.6 90.0

Statistic T 0
N

v .85 85.8 55.1 99.8 98.9 99.5 98.1 98.6 96.2
.90 86.6 52.0 100 99.6 99.7 98.8 99.3 98.7
.95 74.7 31.3 99.9 98.4 100 96.0 99.9 99.8

Statistic M0
N

v .85 35.0 7.8 97.2 77.7 86.1 75.2 97.9 92.7
.90 31.0 5.9 98.0 71.5 90.9 73.4 99.2 95.4
.95 21.1 4.8 93.0 63.0 96.8 75.9 100 98.5

Statistic T 0
N (AM)

v .85 96.6 91.6 100 100 99.6 99.3 99.8 99.7
.90 94.9 85.5 100 100 100 99.9 100 100
.95 82.5 70.0 100 100 100 100 100 100

Statistic M0
N (AM)

v .85 85.3 71.3 99.9 99.8 93.4 85.0 99.8 99.3
.90 68.7 52.3 99.7 98.8 96.3 90.3 99.9 99.9
.95 43.7 28.5 97.0 92.0 98.6 96.3 100 100

(3) The tests based MN and M∗

N are generally too conservative at
the 5% level.

(4) Even though statistic T ∗

N is too conservative at the 5% level in
case of the FAR(1) model, it achieves a reasonable balance of
empirical size at the 10% and 5% levels.

(5) If the temporal dependence is not too strong, we recommend
statistics T ∗

N with v = 90%.

We now turn to the investigation of the empirical power. The
number of DGP’s that could be considered under the alternative of
nonstationarity is enormous. In our simulation study, we consider
merely two examples intended to illustrate the theory developed
in Section 3. Under the change point alternative, HA,1, the DGP is

Xi(t) =


Bi(t) if i < ⌊N/2⌋
Bi(t)+ δ(t) if i ≥ ⌊N/2⌋,

where the Bi are iid Brownian bridges, and δ(t) = 2t(1− t), so that
the change in themean function is comparable to the typical size of
the Brownian bridge. Under the I(1) alternative, HA,2, we consider
the integrated functional sequence defined by
Xi(t) = Xi−1(t)+ Bi(t), 1 ≤ i ≤ N,
where X0(t) = B0(t), and {Bi(t)}∞i=0 are iid Brownian Bridges.
Again, each data generating process is simulated 1000 times and
the rejection rate of H0 is reported when the significance level is
10% and 5%. Table 2 shows the results of these simulations. The
following conclusions can be reached:
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Fig. 1. Five functional data objects constructed from the 1-min average price of Disney stock. The vertical lines separate the days.

(1) Under the change point alternative, the T statistics have higher
power than the M statistics. This is in perfect agreement with
Theorems 3.1 and 3.2, which show that the leading terms
of the T statistics are four times larger than those of the
corresponding M statistics.

(2) The same observation remains true under the integrated
alternative, and again it agrees with the theoretical rates
obtained in Theorems 3.3 and 3.4. Themultiplicative constants
of leading terms of the T statistics are equal to secondmoments
and those of the M statistics to corresponding variances.

(3) As for empirical size, the T statistics are not sensitive to the
choice of v.

(4) The test based on T ∗

N has slightly lower power than those based
on T 0

N and TN , but this is because the latter two tests have
slightly inflated sizes. Our overall recommendation remains
to use T ∗

N with v = 0.90. However, if very high power is of
central importance, and computational time not a big concern,
the method T 0

N(AM)might be superior.

5. Application to intraday price curves

One of the most natural and obvious functional data are
intraday price curves; five such functions are shown in Fig. 1. Not
much quantitative research has however focused on the analysis
of the information contained in the shapes of such curves, even
though they very closely reflect the reactions and expectations
of intraday investors. Extensive research has focused on scalar or
vector summary statistics derived from intraday data, including
realized volatility and noise variance estimation, see Barndorff-
Nielsen and Shephard (2004) and Wang and Zou (2010), among
many others. Several papers have however considered the shapes
of suitably defined price or volatility curves, see Gabrys et al.
(2010), Müller et al. (2011), Gabrys et al. (forthcoming), Kokoszka
and Reimherr (2013) and Kokoszka et al. (2013). This paper focuses
on statistical methodology and the underlying theory, and we
cannot include a comprehensive empirical study of functional
aspects of intraday price data.Wemerely show that the application
of our tests leads to meaningful and useful insights.

Suppose Pn(tj), n = 1, . . . ,N, j = 1, . . . ,m, is the price of a
financial asset at time tj on day n. Fig. 1 shows five functional data
objects constructed from the one minute average price of Disney
stock interpolated by B-splines. In this case, the number of points
tj used to construct each object is m = 390. Each object is viewed

as a continuous curve making this data an excellent candidate for
functional data analysis. As daily closing prices form a nonstation-
ary scalar time series, we would expect the daily price curves to
form a nonstationary functional time series. When our tests are
applied to sufficiently long periods of time, they indeed always re-
ject the null hypothesis of stationarity. For shorter periods of time,
H0 is sometimes rejected and sometimes is not, most likely due to
reduced power. To illustrate, Fig. 2 displays the P-values for the
test based on TN applied to consecutive nonoverlapping segments
of length N in the time period from 04/09/1997 to 04/02/2007,
which comprises 2,510 trading days. This means that there are 50
segments of length N = 50, 25 segments of length N = 100 and
10 segments of length N = 250. If N = 250, H0 is always rejected.
We obtained very similar results for the other T statistics. When
the M statistics are used, the rejection rates are marginally lower,
but overall commensurate with those for the T statistics. We also
applied the tests to several other stocks over the same period, in-
cluding Chevron, Bank of America, Microsoft, IBM, McDonalds, and
Walmart, and obtained nearly identical results. The results are also
very similar for gold futures. The price of gold increased five fold
between 2001 and 2011, with an almost linear trend. For segments
of length N = 100, the null is sometimes not rejected if the curves
do not show a clear increasing tendency over that period, but oth-
erwise we obtained strong rejections.

In order to fit stationary functional time series models to
intraday price curves, a suitable transformation should be ap-
plied. Gabrys et al. (2010) put forward the following definition.

Definition 1. Suppose Pn(tj), n = 1, . . . ,N, j = 1, . . . ,m, is the
price of a financial asset at time tj on day n. The functions

Rn(tj) = 100[ln Pn(tj)− ln Pn(t1)], j = 1, 2, . . . ,m,
n = 1, . . . ,N,

are called the cumulative intraday returns (CIDR’s).

The idea behind Definition 1 is very simple. If the return from
the start of a trading day until its close remains within the 5%
range, Rn(tj) is practically equal to the simple return [Pn(tj) −

Pn(t1)]/Pn(t1). Since Pn(t1) is fixed for every trading day, the Rn(tj)
have practically the same shape as the price curves, see Fig. 3.
However, since they always start from zero, level stationarity is
enforced. The division by Pn(t1) helps reduce the scale inflation. It
can thus be hoped that the CIDR’s will form a stationary functional
time series, whichwill be amenable to the statistical analysis of the
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Fig. 2. P-values for consecutive segments of length N of the price curves Pn(t) of the Disney stock computed using TN with v = .9. The horizontal line shows the 5%
threshold.

Fig. 3. Five cumulative intraday returns constructed from the intraday prices displayed in Fig. 1.

shapes of the intraday price curves.We note that the CIDR’s are not
readily comparable to daily returns because they donot include the
overnight price change. They are designed to statistically analyze
the evolution of the intraday shapes of an asset.

Wewish to verify our conjecture of the stationarity of the CIDR’s
by application of our tests of stationarity. If the conjecture is true,
the expectation is that the P-values will be roughly uniformly
distributed on (0, 1). Fig. 4 shows results of the test using TN when
applied to sequential segments of the CIDR curves of the Disney
stock. We see that the P-values appear to be uniformly distributed
which is consistent with the stationarity of the CIDR’s. Again, the
results for the other eight stocks are very similar.
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Appendix A. Proofs of the results of Section 2

The proof of Theorem 2.1 is based on an approximation devel-
oped in Berkes et al. (2013) (Theorem A.1 below). Define

Γ (x, t) =

∞
i=1

λ
1/2
i Wi(x)ϕi(t), (A.1)

whereWi are independent and identically distributedWiener pro-
cesses (standard Brownian motions). Clearly, Γ (x, t) is Gaussian
with zero mean and EΓ (x, t)Γ (y, s) = min(x, y)C(t, s).

Theorem A.1. If assumptions (2.1)–(2.4) hold, then

∞
ℓ=1

λℓ < ∞ (A.2)



L. Horváth et al. / Journal of Econometrics ( ) – 11

Fig. 4. P-values for consecutive segments of length N of the CIDR curves Rn(t) for the Disney stock. The red line shows the 5% threshold.

and for every N we can define a sequence of Gaussian processes
ΓN(x, t) such that

{ΓN(x, t), 0 ≤ x, t ≤ 1} D
= {Γ (x, t), 0 ≤ x, t ≤ 1}

and

sup
0≤x≤1


(VN(x, t)− ΓN(x, t))2dt = oP(1),

where

VN(x, t) =
1

N1/2

⌊Nx⌋
i=1

ηi(t).

(It follows immediately from (A.2) that sup0≤x≤1

Γ 2(x, t)dt <∞

a.s.)

Proof of Theorem 2.1. Let

V 0
N(x, t) = VN(x, t)− xVN(1, t).

Under H0

ZN(x, t) = V 0
N(x, t)+ µ(t)


⌊Nx⌋ − Nx

N1/2


and since µ ∈ L2 we get

sup
0≤x≤1

∥ZN(x, t)− V 0
N(x, t)∥ ≤

1
N1/2

∥µ∥.

Hence

TN =


(V 0

N(x, t))
2dtdx + oP(1)

and

MN =

 
V 0
N(x, t)−


V 0
N(y, t)dy

2

dxdt + oP(1).

Applying Theorem A.1 we get immediately that

TN
D

−→


(Γ 0(x, t))2dxdt

and

MN
D

−→

 
Γ 0(x, t)−


Γ 0(y, t)dy

2

dxdt,

where

Γ 0(x, t) = Γ (x, t)− xΓ (1, t).

We also note that by the definition of Γ (x, t) in (A.1) we have

Γ 0(x, t) =

∞
i=1

λ
1/2
i Bi(x)ϕi(t), (A.3)

where Bi are independent and identically distributed Brownian
bridges. Using the fact that {ϕi(t), 0 ≤ t ≤ 1}∞i=1 is an orthonormal
system one can easily verify that

(Γ 0(x, t))2dxdt =

∞
i=1

λi


B2
i (x)dx

and 
Γ 0(x, t)−


Γ 0(y, t)dy

2

dtdx

=

∞
i=1

λi

 
Bi(x)−


Bi(y)dy

2

dx.

The following lemma is an immediate consequence of the
results in Section 2.7 of Horváth et al. (2013), or of Dunford and
Schwartz (1988).

Lemma A.1. If assumptions (2.1)–(2.4), (2.13)–(2.16), (2.17) and H0
hold, then

max
1≤i≤d

|λ̂i − λi| = oP(1) and max
1≤i≤d

∥ϕ̂i − ĉiϕi∥ = oP(1),

where ĉ1, ĉ2, . . . , ĉd are unobservable random signs defined as ĉi =

sign(⟨ϕ̂i, ϕi⟩).
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Proof of Theorem 2.2. It follows from Theorem A.1 that

sup
0≤x≤1

|⟨SN(x, ·)− Γ 0
N (x, ·), ϕi⟩| ≤ sup

0≤x≤1
∥SN(x, ·)− Γ 0

N (x, ·)∥

= oP(1)

and by Lemma A.1 we get

sup
0≤x≤1

|⟨Γ 0
N (x, ·), ϕ̂i − ĉiϕi⟩| ≤ sup

0≤x≤1
∥Γ 0

N (x, ·)|ϕ̂i − ĉiϕi∥ = oP(1).

It is immediate from (A.3) that for all N
⟨Γ 0

N (x, ·), ϕi⟩, 0 ≤ x ≤ 1, 1 ≤ i ≤ d


D
=


λ
1/2
i Bi(x), 0 ≤ x ≤ 1, 1 ≤ i ≤ d


,

where B1, B2, . . . , Bd are independent Brownian bridges. Thus we
obtain that

d
i=1

1

λ̂i
⟨Γ 0

N (x, ·), ĉiϕi⟩
2 D[0,1]

−→

d
i=1

B2
i (x). (A.4)

The weak convergence in (A.4) now implies (2.18). The same
arguments can be used to prove (2.19)–(2.21). �

Appendix B. Proofs of the results of Section 3

Proof of Theorem 3.1. First we introduce the function

δN(x, t) = µ(t){⌊Nx⌋ − Nx} + δ(t){(⌊Nx⌋ − k∗)

× I{k∗
≤ ⌊Nx⌋} − x(N − k∗)}.

Under HA,1 we can write

ZN(x, t) = V 0
N(x, t)+ N−1/2δN(x, t) (B.1)

and therefore

TN =


Z2
N(x, t)dtdx

=


(V 0

N(x, t))
2dtdx +

2
N1/2


V 0
N(x, t)δN(x, t)dxdt

+
1
N


δ2N(x, t)dtdx. (B.2)

It follows from Theorem A.1 that
(V 0

N(x, t))
2dtdx = OP(1). (B.3)

It is easy to check that

sup
0≤x≤1

 1N δN(x, t)− δτ (x, t)
 = O


1
N


, (B.4)

where δτ (x, t) is defined in (3.2). Thus applying Theorem A.1 we
conclude that

1
N


V 0
N(x, t)δN(x, t)dxdt

D
−→


Γ 0(x, t)δτ (x, t)dtdx. (B.5)

Also,

1
N


δ2N(x, t)dtdx = N


δ2(t)dt

 τ

0
x2(1 − τ)2dx

+

 1

τ

(1 − x)2τ 2dx


+ O(1). (B.6)

Now (3.3) is an immediate consequence of (B.2)–(B.6).

The second part of Theorem 3.1 is proven analogously.

Variances of the limits in Theorem 3.1
The next lemma is used to show that the variances of the limits

in Theorem 3.1 are strictly positive.

Lemma B.1. Let Θ be a L2 valued Gaussian process such that
EΘ(t) = 0 and EΘ(t)Θ(s) is a strictly positive definite function on
[0, 1]2. Let g ∈ L2. Then var(


Θ(t)g(t)dt) = 0 if and only if g = 0

a.e.

Proof. By the Karhunen–Loéve expansion and the assumption that
EΘ(t)Θ(s) is strictly positive definite we may write

Θ(t) =

∞
ℓ=1

ρℓNℓφℓ(t), 0 ≤ t ≤ 1,

where {Ni}
∞

i=1 are iid standard normal random variables, {φi(t)}∞i=1
form an orthonormal basis, and ρi > 0 for all i ≥ 1. It follows by a
simple calculation that
Θ(t)g(t)dt =

∞
ℓ=1

ρℓNℓ⟨φℓ, g⟩,

and hence

var


Θ(t)g(t)dt


=

∞
ℓ=1

ρ2
ℓ ⟨φℓ, g⟩

2.

Since


∞

ℓ=1 ρ
2
ℓ ⟨φℓ, g⟩

2
= 0 if and only if g = 0 a.e., the result

follows. �

It is easy to see that

Γ 0(x, t)δτ (x, t)dtdx is a normal random

variable with zero mean. Its variance is thus equal to

E


Γ 0(x, t)δτ (x, t)dtdx
2

=


C(t, s)δτ (x, t)δτ (y, s)(min(x, y)− xy)dtdsdxdy

=


C(t, s)δ(t)δ(s)dtds


×


δ̄τ (x)δ̄τ (y)(min(x, y)− xy)dxdy


, (B.7)

where δ̄τ (x) is defined in (3.18). Similarly to (3.3), the limit in (3.4)
is normally distributed with zero mean and variance equal to

E
 

Γ 0(x, t)−


Γ 0(y, t)dy


×


δτ (x, t)−


δτ (y, t)dy


dtdx

2
=


C(t, s)δ(t)δ(s)dtds


δ̄τ (x)δ̄τ (y)

×


min(x, y)− xy −


(min(y, z)− yz)dz

−


(min(x, z)− xz)dz +


(min(z, z ′)− zz ′)dzdz ′


dxdy


=


C(t, s)δ(t)δ(s)dtds


×


δ̄τ (x)δ̄τ (y)


min(x, y)− xy −

y(1 − y)
2

−
x(1 − x)

2
+

1
12


dxdy


.
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If the bivariate function C(t, s) is strictly positive definite, then
C(t, s)δ(t)δ(s)dtds > 0 if δ(t) is not the 0 function in L2.

Observing that

δ̄τ (x)δ̄τ (y)(min(x, y) − xy)dxdy = var(


B(x)

× δ̄τ (x)dx), where B is a Brownian bridge, the positivity of (B.7)
follows by Lemma B.1 since δ̄τ (x) is not the zero function and
the covariance function of the Brownian bridge is strictly positive
definite. A similar application of Lemma B.1 yields that

δ̄τ (x)δ̄τ (y)

×


min(x, y)− xy −

y(1 − y)
2

−
x(1 − x)

2
+

1
12


dxdy > 0.

Lemma B.2. If assumptions (2.1)–(2.4), (2.13)–(2.16), (3.1) and HA,1
hold, then
ĈN(t, s)−


2τ(1 − τ)δ(t)δ(s)

N
i=1

K(i/h)+ C̄N(t, s)




= OP(h/N1/2),

where

C̄N(t, s) = γ̄0(t, s)+

N−1
i=1

K


i
h


{γ̄i(t, s)+ γ̄i(s, t)} (B.8)

with

γ̄i(t, s) =
1
N

N
j=i+1


ηj(t)− η̄N(t)


×

ηj−i(s)− η̄N(s)


, 0 ≤ i ≤ N − 1.

Proof. First we write with µi(t) = EXi(t) and observe that

γ̂i(t, s) =
1
N

N
j=i+1


ηj(t)− η̄N(t)− [µ̄N(t)− µi(t)]


×

ηj−i(s)− η̄N(s)− [µ̄N(s)− µj−i(s)]


=

1
N

N
j=i+1


ηj(t)− η̄N(t)

 
ηj−i(s)− η̄N(s)


+

1
N

N
j=i+1

(ηj(t)− η̄N(t))(µj−i(s)− µ̄N(s))

+
1
N

N
j=i+1

(µj(t)− µ̄N(t))(ηj−i(s)− η̄N(s))

+
1
N

N
j=i+1

(µj(t)− µ̄N(t))(µj−i(s)− µ̄N(s))

= γ̄i(t, s)+ γ̂
(1)
i (t, s)+ γ̂

(2)
i (t, s)+ γ̂

(3)
i (t, s)

with

η̄N(t) =
1
N

N
ℓ=1

ηℓ and µ̄N(t) = µ(t)+
N − ⌊Nτ⌋

N
δ(t).

By the triangle inequality we have
γ̂ (1)0 (t, s)+

N−1
i=1

K


i
h


(γ̂

(1)
i (t, s)+ γ̂

(1)
i (s, t))




≤

γ̂ (1)0 (t, s)
+ 

N−1
i=1

K


i
h


γ̂
(1)
i (t, s)




+


N−1
i=1

K


i
h


γ̂
(1)
i (s, t)


 .

Using Theorem A.1 we getγ̂ (1)0 (t, s)
 = OP(N−1/2).

Using again the triangle inequality we obtain that

E


N−1
i=1

K (i/h) γ̂ (1)i (t, s)


 ≤

N−1
i=1

K (i/h) E∥γ̂
(1)
i (t, s)∥. (B.9)

Furthermore by an application of the Cauchy–Schwarz inequal-
ity

E∥γ̂
(1)
i (t, s)∥ ≤


 1N

N
j=i+1

(µj−i(s)− µ̄N(s))




× E


 1N

N
j=i+1

(ηj(t)− η̄N(t))


 .

It is clear that

max
1≤i≤N


 1N

N
j=i+1

(µj−i(s)− µ̄N(s))


 = O(1),

and by Berkes et al. (2013)

max
1≤i≤N

E


 1N

N
j=i+1

(ηj(t)− η̄N(t))


 = O(N−1/2).

Combining these bounds with (B.9) and assumptions (2.13)–(2.15)
gives

E


N−1
i=1

K(i/h)γ̂ (1)i (t, s)


 = O(h/N1/2),

and hence by Markov’s inequality
N−1
i=1

K(i/h) ˆ
γ
(1)
i (t, s)


 = OP(h/N1/2).

Thus we conclude
γ̂ (1)0 (t, s)+

N−1
i=1

K


i
h


(γ̂

(1)
i (t, s)+ γ̂

(1)
i (s, t))




= OP(h/N1/2). (B.10)

Similarly to (B.10) we have
γ̂ (2)0 (t, s)+

N−1
i=1

K


i
h


(γ̂

(2)
i (t, s)+ γ̂

(2)
i (s, t))




= OP(h/N1/2). (B.11)

Using the definition of µ̄N(t) and HA,1 we obtain that

max
0≤i≤h

∥γ̂
(3)
0 (t, s)− τ(1 − τ)δ(t)δ(s)∥ = O(h/N). (B.12)

The lemma now follows from (B.10)–(B.12). �
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Proof of Theorem 3.2. The proof of Theorem 3.2 is based on the
asymptotic properties of ĈN under HA,1. It follows from Lemma B.2
that (3.5) and (3.6) hold assuming only (2.16). We write by (B.1)

⟨ZN(x, ·), ϕ̂1⟩
2

= ⟨V 0
N(x, ·), ϕ̂1⟩

2
+ N−1

⟨δN(x, ·), ϕ̂1⟩
2

+ 2⟨V 0
N(x, ·), ϕ̂1⟩N−1/2

⟨δN(x, ·), ϕ̂1⟩.

Combining Theorem A.1 with the Cauchy–Schwarz inequality we
get

sup
0≤x≤1

|⟨V 0
N(x, ·), ϕ̂1⟩| ≤ sup

0≤x≤1
∥V 0

N(x, ·)∥ = OP(1).

Using (B.4) we conclude
N−1

⟨δN(x, ·), ϕ̂1⟩
2dx =

N
3
τ 2(1 − τ)2⟨δ, ϕ̂1⟩

2(1 + OP(1/N)).

Theorem A.1 and (3.6) yield

N1/2


⟨V 0
N(x, ·), ϕ̂1⟩⟨δN(x, ·), ϕ̂1⟩dx

D
→

1
∥δ∥


⟨Γ0(x, ·), δ⟩⟨δτ (x, ·), δ⟩dx

=

 
Γ 0(x, t)δ(t)dt


[(x − τ)I{x ≥ τ } − x(1 − τ)]dx

=


Γ 0(x, t)δτ (x, t)dxdt.

This completes the proof of (3.8). It follows from (3.8) that

λ̂1

N1/2


T 0
N(1)−

N

3λ̂1
τ 2(1 − τ)2⟨δ, ϕ̂1⟩

2


D
−→ 2


Γ 0(x, t)δτ (x, t)dxdt,

and therefore (3.8) implies (3.10). (3.9) and (3.11) are proven
similarly.

If in addition we assume that h/N1/2
→ 0 as N → ∞ then by

Lemma B.2 and Dunford and Schwartz (1988) we have (3.5), (3.6),
and for every fixed i ≥ 2,

λ̂i
P

→ λ̄i, (B.13)

where λ̄2 ≥ λ̄3 ≥ · · · ≥ 0 (might be different from λi, i ≥ 2),

∥ϕ̂i(t)− ĉiϕ̄i∥ = oP(1), i ≥ 2, (B.14)

with some functions ϕ̄2, ϕ̄3, . . ., where ĉi = sign(⟨ϕ̂i, ϕ̄i⟩). (Of
course, ϕ̄i is only defined if λ̂i > 0.) Using again (B.1) with
Theorem A.1 and (B.14), we obtain that

⟨ZN(x, ·), ϕ̂i⟩
2dx =

N
3
τ 2(1 − τ)2⟨δ, ϕ̂i⟩

2
+ OP(N1/2).

Since δ and ϕ̄i are orthogonal for all i ≥ 2, (B.14) implies ⟨δ, ϕ̂i⟩ =

oP(1). Hence (3.12) follows from (3.8). The results in (3.13)–(3.15)
can be established similarly so the proofs are omitted.

Proof of Remark 3.1. Let

βN(x, t) = µ(t){⌊Nx⌋ − Nx} + δ∗

N(t){(⌊Nx⌋ − k∗)

× I{k∗
≤ ⌊Nx⌋} − x(N − k∗)}.

Using (B.2) with δN(x, t) replaced with βN(x, t) and Theorem A.1
we get

TN −
1
N

∥βN∥
2

=


(Γ 0

N (x, t))
2dtdx(1 + oP(1))

+ 2N1/2


Γ 0
N (x, t)δ

∗

N(t)δ̄τ (x)dtdx

× (1 + oP(1)). (B.15)

By the Cauchy–Schwarz inequality
Γ 0
N (x, t)δ

∗

N(t)δ̄τ (x)dtdx = OP(∥δ
∗

N∥). (B.16)

Elementary arguments show that

1
N

∥βN∥
2

= ∥δ̄τ∥
2N∥δ∗

N∥
2(1 + o(1)), (B.17)

as N → ∞. If N1/2
∥δ∗

N∥ → 0 as N → ∞ then by (B.15)–

(B.17), we obtain immediately that TN
D

−→

(Γ 0(x, t))2dtdx. If

N1/2
∥δ∗

N∥ → ∞, then again by (B.15)–(B.17) we see that TN
P

−→

∞. Since for every fixed N ,

Γ 0
N (x, t)δ

∗

N(t)δ̄τ (x)dtdx is normal
with zero mean and variance


(min(x, y) − xy)δ̄τ (x)δ̄τ (y)dxdy

×

δ∗

N(t)δ
∗

N(s)C(t, s)dtds, hence (3.16) follows. In the case when

N1/2δ∗

N
L2

−→ δ∗, it follows from (B.17) that (1/N)∥βN∥
2

→ ζ =

∥δ̄τ∥
2
∥δ∗

∥
2 > 0. Now by (B.15) and the representation of Γ 0

N in
(A.3) we conclude

TN
D
= ζ (1 + o(1))

+

∞
ℓ=1

λ
1/2
ℓ


λ
1/2
ℓ


B2
ℓ(x)dx +


Bℓ(x)δ̄τ (x)dx

×


ϕℓ(t)N1/2δ∗

N(t)dt

(1 + oP(1))

→ ζ +

∞
ℓ=1


λℓ∥Bℓ∥2

+ 2λ1/2ℓ ⟨Bℓ, δ̄τ ⟩⟨ϕℓ, δ∗
⟩


,

which completes the proof of (3.17). �

Lemma B.3. If assumptions (2.1)–(2.4) hold, then

sup
0≤x≤1

 
UN(x, t)−

 x

0
ΓN(u, t)du

2

dt = oP(1), (B.18)

where

UN(x, t) =
1

N3/2

⌊Nx⌋
k=1

k
i=1

ηi(t),

and the Gaussian processes ΓN(x, t) are defined in Theorem A.1.

Proof. It is enough to verify that

sup
0≤x≤1

 
UN(x, t)−

 x

0
VN(u, t)du

2

dt

= sup
0≤x≤1

UN(x, ·)−

 x

0
VN(u, ·)

2 = oP(1)

and

sup
0≤x≤1

  x

0
{VN(u, t)− ΓN(u, t)} du

2

dt = oP(1).

Elementary arguments yieldUN(x, t)−

 x

0
VN(u, t)du

 ≤
1

N3/2

⌊Nx⌋
i=1

ηi(t)

 .
It follows from Theorem A.1 that

sup
0≤x≤1


N−1/2

⌊Nx⌋
i=1

ηi(·)


 = OP(1),



L. Horváth et al. / Journal of Econometrics ( ) – 15

and therefore

sup
0≤x≤1

UN(x, ·)−

 x

0
VN(u, ·)du

 = OP


1
N


.

Using the Cauchy–Schwarz inequality with Theorem A.1 we
conclude  x

0
(VN(u, t)− ΓN(u, t)) du

2

dt

≤

  x

0
(VN(u, t)− ΓN(u, t))2 dudt

≤

 
(VN(u, t)− ΓN(u, t))2 dudt = oP(1).

Now the proof of Lemma B.3 is complete. �

Proof of Theorem 3.3. First we note that under HA,2 we have

1
N3/2

⌊Nx⌋
k=1

Xk(t) = UN(x, t)+
⌊Nx⌋
N3/2

µ(t). (B.19)

Therefore

1
N
ZN(x, t) = UN(x, t)− xUN(1, t)+

⌊Nx⌋ − xN
N3/2

µ(t).

Using (B.19) we get via the Cauchy–Schwarz inequality
 

1
N
ZN(x, t)

2

dtdx −


(UN(x, t)− xUN(1, t))2dtdx


≤

 
1
N
ZN(x, t)− [UN(x, t)− xUN(1, t)]

2

dtdx

+ 2
  1N ZN(x, t)− [UN(x, t)− xUN(1, t)]


× |UN(x, t)− xUN(1, t)|dtdx

≤ oP(1)+ oP(1)


(UN(x, t)− xUN(1, t))2dtdx
1/2

= oP(1),

since by Lemma B.3
(UN(x, t)− xUN(1, t))2dtdx = OP(1).

It also follows from Lemma B.3 that
(UN(x, t)− xUN(1, t))2dtdx

D
−→


∆2(x, t)dtdx,

which completes the proof of (3.20). The proof of (3.21) is similar
to that of (3.20) and therefore the details are omitted.

Lemma B.4. Define

IN(z, t) =

 z

0
ΓN(u, t)du −

  v

0
ΓN(u, t)du


dv,

where the Gaussian processesΓN(x, t) are defined in TheoremA.1. Let

QN(t, s) = 2
 c

0
K(w)dw

 1

0
IN(z, t)IN(z, s)dz.

If assumptions (2.1)–(2.4), (2.13)–(2.16) and HA,2 hold, then 1
Nh

ĈN(t, s)− QN(t, s)
 = oP(1).

Proof. Since

X̄N(t) = µ(t)+
1
N

N
j=1

j
ℓ=1

ηℓ(t),

Theorem A.1 yieldsN−1/2(X̄N(t)− µ(t))−

  v

0
ΓN(u, t)du


dv
 = oP(1),

resulting in

max
1≤i≤N−1

 1N γ̂i(t, s)
−

1
N

N
j=i+1

 j/N

0
ΓN(u, t)du −

  v

0
ΓN(u, t)du


dv


×

 (j−i)/N

0
ΓN(u, s)du −

  v

0
ΓN(u, s)du


dv


= oP(1). (B.20)

Next we use the almost sure continuity with ΓN(0, t) = 0 to
conclude

max
1≤i≤ch


 1N

N
j=i+1

 j/N

0
ΓN(u, t)du −

  v

0
ΓN(u, t)du


dv


×

 (j−i)/N

0
ΓN(u, s)du −

  v

0
ΓN(u, s)du


dv


−
1
N

N
j=i+1

 j/N

0
ΓN(u, t)du −

  v

0
ΓN(u, t)du


dv


×

 j/N

0
ΓN(u, s)du −

  v

0
ΓN(u, s)du


dv


= oP(1). (B.21)

Putting together (B.20) and (B.21) we get

max
1≤i≤ch

 1N γ̂i(t, s)−

 1

i/N

 z

0
ΓN(u, t)du

−

  v

0
ΓN(u, t)du


dv


×

 z

0
ΓN(u, s)du −

  v

0
ΓN(u, s)du


dv


dz


= oP(1)

and

max
1≤i≤ch

 1

i/N

 z

0
ΓN(u, t)du −

  v

0
ΓN(u, t)du


dv


×

 z

0
ΓN(u, s)du −

  v

0
ΓN(u, s)du


dv


dz

−

 1

0

 z

0
ΓN(u, t)du −

  v

0
ΓN(u, t)du


dv


×

 z

0
ΓN(u, s)du −

  v

0
ΓN(u, s)du


dv


dz
 = oP(1).

Since K satisfies conditions (2.14) and (2.15), the proof of
Lemma B.4 is complete. �
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Lemma B.5. For every N ≥ 1 we have

{QN(t, s), 0 ≤ t, s ≤ 1} D
= 2

 c

0
K(w)dw

×


∞

i,j=1

λ
1/2
i λ

1/2
j ϕi(t)ϕj(s)νi,j


, (B.22)

where λ1, λ2, . . . , ϕ1, ϕ2, . . . are defined in (2.9) and for every 1 ≤

i, j < ∞

νi,j
D
=

  z

0
Wi(u)du −

  v

0
Wi(u)du


dv


×

 z

0
Wj(u)du −

  v

0
Wj(u)du


dv


dz,

where W1,W2, . . . are independent Wiener processes. Also, QN(t, s)
is a positive non-negative function with for all N with probability one.

Proof. The representation in (B.22) is an immediate consequence
of (A.1). It follows from (B.22) that QN(t, s) is symmetric and QN ∈

L2 with probability one. Also for any g ∈ L2 we have
QN(t, s)g(t)g(s)dtds

=

  ∞
i=1

λ
1/2
i ϕi(t)

 z

0
Wi(u)du

−

  v

0
Wi(u)du


dv

g(t)dt

2

dz

≥ 0,

completing the proof. �

Proof of Theorem 3.4. The result follows immediately from the
proofs of Lemmas B.3 and B.4.

Proof of Theorem 3.5. The result in Theorem 3.4 and (3.22) yield
that there are processes ΓN(x, t),∆N(x, t),QN(t, s) such that

{ΓN(x, t),∆N(x, t),QN(t, s), 0 ≤ x, t, s ≤ 1}
D
= {Γ (x, t),∆(x, t),QN(t, s), 0 ≤ x, t, s ≤ 1}

and

max
0≤x≤1

 1N ZN(x, t)−∆N(x, t)
 = oP(1), 1

Nh
ĈN(t, s)− QN(t, s)

 = oP(1).

Similarly to (3.22) we define λ1,N∗ ≥ λ∗

2,N ≥ · · · and random
functions ϕ∗

1,N(t), ϕ
∗

2 (t), . . . satisfying

λ∗

i,Nϕ
∗

i,N(t) =


QN(t, s)ϕ∗

i,N(s)ds, 1 ≤ i < ∞. (B.23)

Hence

max
1≤i≤d

|λ̂i − λ∗

i,N | = oP(1)

and

max
1≤i≤d

∥ϕ̂i − ĉiϕ∗

i,N∥ = oP(1),

where ĉ1, ĉ2, . . . are random signs. By construction,

{∆N(x, t),QN(t, s), λ∗

1,N , . . . , λ
∗

d,N , (ϕ
∗

1,N(t))
2,

. . . , (ϕ∗

d,N(t))
2, 0 ≤ x, t, s ≤ 1}

D
= {∆(x, t),QN(t, s), λ∗

1, . . . , λ
∗

d, (ϕ
∗

1 (t))
2,

. . . , (ϕ∗

d (t))
2, 0 ≤ x, t, s ≤ 1},

which completes the proof.
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