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MOTIVATION: BRAZILIAN COVID DATA

Data:
• What? Infection data Ct-values

• Where? Brazil resolution down to cities

• When? 05/15/2020− 05/15/2022 daily, ∼ 105 weeks

Aim:
• Identify changes in space and time

• Changes in viral loads



DATA (I)

Typical studies: Counts of cases or deaths



DATA (II)

Ct-values:
• Measured by PCR test

• Time it takes to replicate measurable amount of virus

• Measure of viral load (between 10 and 40)

• lower number = more virus

Data Aggregation:
• ≈ 300,000 observations (1.5 million with covariates)

• No or few tests on many days in many regions

• Time aggregation: weeks

• Space Aggregation: 9 regions
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STATISTICAL MODEL

Indexes:
• s = 1, ...,S for space

• t = 1, ...,T for time

• Ns,t number of measurements at (s, t)

Data model:
For all (s, t) fs,t is a random density.

X (s, t , i) ∼ fs,t , i = 1, ...,Ns,t .

Objective:
• Structural breaks in the fs,t (in time and space)



BUILDING BLOCKS

• The centered log transformation

Ψ : f 7→ log[f ]− 1
|I|

∫
I
log[f (x)]dx

• Ψ is bijective and takes (positive) densities on I to L2
0(I)

• This defines the Hilbert structure of the Bayes space

f ⊕ g := Ψ−1(Ψ[f ] + Ψ[g]), ‖f‖ :=
{∫

I
Ψ[f ](x)2dx

}1/2
.



CHANGE POINT MODEL

Change point model:
•

Ψ[fs,t ] = εs,t +

µ
(1)
s , for t ≤ bTθsc
µ
(2)
s , for t > bTθsc.

• θs describes the time of the change

• A change occurs at s when µ(1)s 6= µ
(2)
s

Aim: Infer set of spatial locations

A(changes) := {s : µ
(1)
s 6= µ

(2)
s }

and times of changes.



AIM OF INFERENCE

Recall
A(changes) := {s : µ

(1)
s 6= µ

(2)
s }.

Aim:
• Create an estimator Â for A(changes)

• Consistency:
P
(
A(changes) ⊂ Â

)
→ 1

• Level-α:
P
(
A(changes) 6= Â

)
→ α.

Our tools:
• An asymptotic test ϕ[A] of ”no change in A”

H0 : A ∩A(changes) = ∅



DENSITY ESTIMATORS

Change point model:
• Recall the data

X (s, t , i) i.i.d .∼ fs,t , i = 1, ...,Ns,t

• We consider kernel density estimators KDE

f̂s,t (x) :=
1

Ns,ths,t

Ns,t∑
i=1

K
(x − X (s, t , i)

hs,t

)
• Consider Ψ[f̂s,t ] as proxies for Ψ[fs,t ].



SPARSITY (I)

Sparsity problem:
• f̂s,t − fs,t is not asymptotically negligible.

• f̂s,t can be 0 and Ψ(f̂s,t ) is not defined

• f̂s,t may not even have the Fréchet mean

Remedies:
• Restriction to subinterval J, where fs,t ≥ c > 0.

• ”Well-behaved version” f̆s,t of f̂s,t (equal with high
probability)

Mathematical details will follow.



SEQUENTIAL TESTING

Unordered locations:

Ordered locations s1, s2, s3, s4:



SEQUENTIAL TESTING: ELIMINATION

Statistically order locations ŝ1, ŝ2, ŝ3, ŝ4 from the smallest to
largest P-value of a change point test ϕ applied to each
location.

This ordering is equal to the correct ordering s1, s2, s3, s4 with
probability approaching 1.

Sequential testing: Set Â = ∅
1) ϕ[s1, ...s4] (Is there a change in {s1, ..., s4})?

• Yes: Update Â = {s1} and move on
• No: stop

2) ϕ[s2, ...s4] (Is there still a change in {s2, ..., s4})?
• Yes: Update Â = {s1, s2}
• No: stop

3) ...



CHANGE POINT TEST

Construction of ϕ:
• CUSUM statistic

∆̂[A] =
1
|A|

∑
s∈A

1
T 2

T∑
t=1

∥∥∥ t∑
r=1

Ψ[f̂s,r ]− t
T

T∑
r=1

Ψ[f̂s,r ]
∥∥∥2

≈ 1
|A|

∑
s∈A

1
T

T∑
t=1

∥∥∥ 1√
T

t∑
r=1

Ψ[f̆s,r ]− 1√
T

t
T

T∑
r=1

Ψ[f̆s,r ]
∥∥∥2

d→ 1
|A|

∑
s∈A

∫ 1

0
‖Ws(x)− xWs(1)‖2dx .

• {Ws}s=1,...,S is a Brownian motion in {L2
0(J)}S.

• {Ws}s=1,...,S has the same covariance as {Ψ(fs,1)}s=1,...,S.
Spatial dependence estimated, MC to get the distribution of the limit.



THEORY (I)

Test decision:

ϕT [A] :=

0, if ∆̂[A] ≤ q1−α[A],

1, otherwise.

On a set of probability approaching 1, ∆̆[A] = ∆̂[A]. These two
random variables have the same asymptotic distribution.

On a set of probability approaching 1, for each subset of
regions, we can detect change with probability approaching 1, if
it occurs (consistency of ϕT [A]).

We have a fixed (finite) number of regions.



ILLUSTRATION OF THE MAIN IDEA

Replace asymptotic probability 1, by probability 1. Suppose
S = 4, A∗ = {1,2} (change in 1 and 2, but not in 3 or 4).

H0
0 : no change in {1, 2, 3, 4}. Change point detected with probability 1,
→ test
H1

0 : no change in {2, 3, 4}. Change point detected with probability 1,
→ test
H2

0 : no change in {3, 4}. Error with probability α (change in 3 or 4),
→ test
H3

0 : no change in {4}. Error with probability α (change in 4),

Â = {1, 2, 3} ⇐⇒ reject H2
0 (α)→ accept H3

0 (1− α)
Â = {1, 2, 3, 4} ⇐⇒ reject H2

0 (α)→ reject H3
0 (α)

Probability of misidentifying A∗ = {1, 2}:
α(1− α) + αα = α.



SOME SIMULATIONS

Parameters: T = 100,N = 50, α = 0.05,S = 5
Small change Large change

1 region 0.95 (0.82) 0.96 (0.82)
2 regions 0.90 (0.85) 0.95 (0.86)
3 regions 0.90 (0.89) 0.96 (0.91)



RESULTS (I)

Date 5-11 July of 2021 18-24 October of 2021 1-7 November of 2021
t∗ 62 77 79
year/week 2021/27 2021/42 2021/44
region Region7NorthEast Region8CentralEast Region1MT
Date 1-7 November of 2021 1-7 November of 2021 15-21 November of 2021
t∗ 79 79 81
year/week 2021/44 2021/44 2021/46
region Region2DF Region3GO Region4MG
Date 15-21 of November 2021 15-21 of November 2021 22-28 of November 2021
t∗ 81 81 82
year/week 2021/46 2021/46 2021/47
region Region5RJ Region9South Region6North

Most changes in November 2021
Delta replaced by omicron in January 2022, with initial reports
in November.



RESULTS



RESULTS (II)
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Fréchet mean densities before (dashed) and after (continuous)
the change points.
Omicron more infectious but less severe.



THEORY (II)

Properties of f̆s,t : There exists an approximate version
((f̆s,t )s)t=1,...,T of ((f̂s,t )s)t=1,...,T such that

P
(
f̆s,t (x) = f̂s,t (x), ∀x ∈ J, ∀s, t

)
→ 1, as T →∞, (1)

with ((f̆s,t )s)t=1,...,T independent across t . The version satisfies
for some fixed c > 0 the moment condition

sup
s,t

E‖Ψ[f̆s,t ]‖4 ≤ c (2)

and the mean approximation property

‖EΨ[f̆s,t ]− EΨ[fs,t ]‖ = o(T−1/2). (3)



THEORY (III)

ĞT (x) :=
( 1√

T

bxTc∑
r=1

Y̆s,r − E[Y̆s,r ]
)

s
, x ∈ [0,1],

The Y̆s,r = Ψ(f̆s,t ) are not identically distributed.

Proposition: Under our assumptions,

{ĞT (x)}x∈[0,1]
d→ {W (x)}x∈[0,1]

in the J1 topology of the Hilbert space (L2
0(J))S.


