Diagnostics and Remedial Measures: An Overview

- Residuals
- Model diagnostics
 - Graphical techniques
 - Hypothesis testing
- Remedial measures
 - Transformation
- Later: more about all this for multiple regression
Model Assumptions

Recall simple linear regression model.

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad \epsilon_i \sim \text{iid } \mathcal{N}(0, \sigma^2), \]

for \(i = 1, \ldots, n \).

- A linear-line relationship between \(E(Y) \) and \(X \):

- Homogeneous variance:

- Independence:

- Normal distribution:
Ramifications If Assumptions Violated

Recall simple linear regression model.

- **Nonlinearity**
 - Linear model will fit poorly
 - Parameter estimates may be meaningless

- **Non-independence**
 - Parameter estimates are still unbiased
 - Standard errors are a problem and thus so is inference

- **Nonconstant variance**
 - Parameter estimates are still unbiased
 - Standard errors are a problem

- **Non-normality**
 - Least important, why?
 - Inference is fairly robust to non-normality
 - Important effects on prediction intervals
Model Diagnostics

- Reliable inference hinges on reasonable adherence to model assumptions
- Hence it is important to evaluate the **FOUR** model assumptions, that is, to perform model “diagnostics”.
- The main approach to model diagnostics is to examine the residuals (thanks to the additive model assumption)
- Consider two approaches.
 - Graphical techniques: More subjective but quick and very informative for an expert.
 - Hypothesis tests: More objective and comfortable for amateurs, but outcomes depend on assumptions, sensitivity. Tendency to use as a crutch.
Graphical Techniques

- At this point in the analysis, you have already done EDA.
 - 1D exploration of X and Y.
 - 2D exploration of X and Y.
 - Not very effective for model diagnostics except in drastic cases

- Recall the definition of residual

\[e_i = Y_i - \hat{Y}_i, \text{ where } i = 1, \ldots, n \]

- e_i can be treated as an estimate of the true error

\[e_i = Y_i - E(Y_i) \sim \text{iid } N(0, \sigma^2) \]

- e_i can be used to check normality, homoscedasticity, linearity, and independence.
Properties of Residuals

- Mean:
 \[\bar{e} = \]

- Variance:
 \[MSE = \frac{SSE}{n - 2} = \frac{\sum_{i=1}^{n} e_i^2}{n - 2} = \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n - 2} = s^2. \]

- Nonindependence:

 When the sample size \(n \) is large, however, residuals can be treated as independent.
Standardized Residuals

- For diagnostics there are superior choices to the ‘ordinary residuals’
 - Standardized (KNNL: ‘semi-studentized’) residuals:
 \[\text{Var}(\epsilon_i) = \sigma^2 \]
 therefore is it is natural to apply the standardization
 \[e_i^* = \]

- But each \(e_i \) has a different variance.
 - Use this fact to derive superior type of residuals below
Hat Values

\[\hat{Y}_i = \]

The \(h_{ij} \) are called hat values.
Deriving the Variance of Residuals

Using \(\hat{Y}_i = \sum_j h_{ij} Y_j \) we obtain

\[e_i = \]

Therefore (since the Y’s are independent)

\[Var\{e_i\} = \]
Continuing to Derive Variance of Residuals

Using \(\text{Var}\{e_i\} = \sigma^2 \left[(1 - h_{ii})^2 + \sum_{j \neq i} h_{ij}^2 \right] \), we have

\[
\sum_j h_{ij}^2 = h_{ii}
\]

(show it in HW.) Finally,

\[
\begin{align*}
\text{Var}\{e_i\} &= \sigma^2 \left((1 - h_{ii})^2 + \sum_{j \neq i} h_{ij}^2 \right) \\
&= \sigma^2 \left(1 - 2h_{ii} + h_{ii}^2 + \sum_{j \neq i} h_{ij}^2 \right) \\
&= \sigma^2 \left(1 - 2h_{ii} + \sum_j h_{ij}^2 \right) \\
&= \sigma^2 (1 - 2h_{ii} + h_{ii}) \\
&= \sigma^2 (1 - h_{ii})
\end{align*}
\]
Studentized Residuals

- Now we may scale each residual separately by its own standard deviation
- The (internally) studentized residual is

\[r_i = \frac{e_i}{\sqrt{MSE(1 - h_{ii})}} \]

- There is still a problem: Imagine that \(Y_i \) is a severe outlier
 - \(Y_i \) will strongly ‘pull’ the regression line toward it
 - \(e_i \) will understate the distance between \(Y_i \) and the ‘true’ regression line
- The solution is to use ‘externally studentized residuals’…
Studentized Residuals

- Now we may scale each residual separately by its own standard deviation.
- The (internally) studentized residual is

\[r_i = \frac{e_i}{\sqrt{MSE(1 - h_{ii})}} \]

- There is still a problem: Imagine that \(Y_i \) is a severe outlier.
 - \(Y_i \) will strongly ‘pull’ the regression line toward it.
 - \(e_i \) will understate the distance between \(Y_i \) and the ‘true’ regression line.
- The solution is to use ‘externally studentized residuals’...
Studentized Deleted Residuals

- To eliminate the influence of Y_i on the misfit at the ith point, fit the regression line based on all points except the ith.
- Define the prediction at X_i using this deleted regression as $\hat{Y}_{i(i)}$.
- The ‘deleted residual’ is $d_i = Y_i - \hat{Y}_{i(i)}$.
- The studentized deleted residual is

 $$t_i = d_i / \hat{s}\{d_i\} = \frac{Y_i - \hat{Y}_{i(i)}}{\sqrt{MSE(i)}/(1 - h_{ii})}$$

- No need to fit n deleted regressions, we can show that

 $$d_i = e_i / (1 - h_{ii})$$

 $$(n - 2)MSE = (n - 3)MSE(i) + e_i^2 / (1 - h_{ii})$$

- Also, t_i has a t-distribution: $t_i \sim t_{n-3}$
Residual Plots

Residual plot is a primary graphic diagnostic method.

- Departures from model assumptions can be difficult to detect directly from \(X \) and \(Y \).
- Use the externally standardized residuals

Some key residual plots:

- Plot \(t_i \) against predicted values \(\hat{Y}_i \) (Not \(Y_i \))
 - detect nonconstant variance
 - detect nonlinearity
 - detect outliers
- Plot \(t_i \) against \(X_i \).
 - In simple linear regression this is same as above (Why?)
 - In multiple regression will be useful to detect partial correlation
- Plot \(t_i \) versus other possible predictors (e.g., time)
 - Detect important lurking variable
- Plot \(t_i \) versus lagged residuals
 - Detect correlated errors
- QQ-plot or normal probability (PP-) plot of \(t_i \).
 - Detect non-normality
Nonlinearity of Regression Function

- Plot t_i against \hat{Y}_i (and X_i for multiple linear regressions).
 - Random scatter indicates no serious departure from linearity.
 - Banana indicates departure from linearity.
 - Could fit nonparametric smoother to residual plot to aid detection

- Example: Curved relationship (KNNL Figure 3.4(a)).

- Plotting Y vs. X is not nearly as effective for detecting nonlinearity because trend has not been removed
 - Logically, you are investigating model assumptions not “marginal effect”.
Nonlinearity of Regression Function

- Plot t_i against \hat{Y}_i (and X_i for multiple linear regressions).
 - Random scatter indicates no serious departure from linearity.
 - Banana indicates departure from linearity.
 - Could fit nonparametric smoother to residual plot to aid detection.

- Example: Curved relationship (KNNL Figure 3.4(a)).

- Plotting Y vs. X is not nearly as effective for detecting nonlinearity because trend has not been removed.
 - Logically, you are investigating model assumptions not “marginal effect”.

W. Zhou (Colorado State University)
Nonconstant Error Variance

- Plot t_i against \hat{Y}_i (and X_i for multiple linear regressions).
 - Random scatter indicates no serious departure from constant variance.
 - Could fit nonparametric smoother to this plot to aid detection
- Funnel indicates non-constant variance.
- Example: KNNL Figure 3.4(c).
- Often both nonconstant variance and nonlinearity exist.
Nonindependence of Error Terms

- Possible causes of nonindependence.
 - Observations collected over time and/or across space.
 - Study done on sets of siblings.
- Departure from independence. For example,
 - Trend effect (KNNL Figure 3.4(d), 3.8(a)).
 - Cyclical nonindependence (KNNL Figure 3.8(b)).
- Plot t_i against other covariate, such as time.
- Autocorrelation function plot (acf())
Nonnormality of Error Terms

- Box plot, histogram, stem-and-leaf plot of t_i.
- QQ (quantile-quantile) plot.
 1. Order the residuals: $t_{(1)} \leq t_{(2)} \leq \cdots \leq t_{(n)}$.
 2. Find the corresponding "rankits": $z_{(1)} \leq z_{(2)} \leq \cdots \leq z_{(n)}$, where for $k = 1, \ldots, n$,

$$z_{(k)} = \sqrt{MSE} \times z \left(\frac{k - 0.375}{n + 0.25} \right)$$

is an approximation of the expected value of the kth smallest observation in a normal random sample.
 3. Plot $t_{(k)}$ against $z_{(k)}$.

- QQ plot should be approximately linear if normality holds
 - ‘S’ shape means distribution of residuals has light (‘short’) tails
 - Backwards ‘S’ means heavy tails
 - ‘C’ or backwards ‘C’ means skew

- It is a good idea to examine other possible problems first.
Presence of Outliers

- An outlier refers to an extreme observation.

- Some diagnostic methods
 - Box plot of t_i.
 - Plot t_i against \hat{Y}_i (and X_i).
 - t_i which are very unlikely compared to the reference t-distribution could be called outliers
 - Modern cluster analysis methods

- Outliers may convey important information.
 - An error.
 - A different mechanism is at work.
 - A significant discovery.

- Temptation to throw away outliers because they may strongly influence parameter estimates.
 - Doesn’t mean that the model is right and the data point is wrong
 - The data point is right and the model is wrong
Graphical Techniques: Remarks

- We generally do not plot residuals \((t_i)\) against response \((Y_i)\). Why?
- Residual plots may provide evidence against model assumptions, but do not generally validate assumptions.
- For data analysis in practice:
 - Fit model and check model assumptions (an iterative process).
 - Generally do not include residual plots in a report, but include a sentence or two such as “Standard diagnostics did not indicate any violations of the assumptions for this model.”
- For this class, always include residual plots for homework assignments so you can learn the methods
- No magic formulas.
- Decision may be difficult for small sample size.
- As much art as science.
Diagnostic Methods Based on Hypothesis Testing

- Tests for linearity: F test for lack of fit (Section 3.7).
- Tests for constancy of variance (Section 3.6):
 - Brown-Forsythe test.
 - Breusch-Pagan test.
 - Levene’s test.
 - Bartlett’s test.
- Tests for independence (Chapter 12):
 - Runs test.
 - Durbin-Watson test.
- Tests for normality (Section 3.5):
 - χ^2 test.
 - Kolmogorov-Smirnov test.
- Tests for outliers (Chapter 10).
Residual plots can be used to assess the adequacy of a simple linear regression model. A more formal procedure is a test for lack of fit using “pure error”.

Need ‘repeat groups’

For a given data set, suppose we have fitted a simple linear regression model and computed regression error sum of squares

\[SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2. \]

These deviations \(Y_i - \hat{Y}_i \) could be due to either random fluctuations around the linear line or an inadequate model.
Pure Error and Lack of Fit

- The main idea is to take several observations on Y for the same X, independently, to distinguish the error due to random fluctuations around the linear line and the error due to lack of fit of the simple linear regression model.
- The variation among the repeated measurements is called “pure error”.
- The remaining error variation is called “lack of fit”.
- Thus we can partition the regression SSE into two parts:
 \[\text{SSE} = \text{SSPE} + \text{SSLF}\]
 where SSPE = SS Pure Error and SSLF = SS Lack of Fit.
- Actually, we are comparing a “Linear Function” with a “Simple function.”
Pure Error and Lack of Fit

- One possibility is that pure error is comparatively large and the linear model seems adequate. That is, pure error is a large part of the SSE.

- The other possibility is that pure error is comparatively small and linear model seems inadequate. That is, pure error is a small part of the regression error and error due to lack of fit is then a large part of the SSE.

- If the latter case holds, there may be significant evidence of lack of fit.
Notation

- Models (R notation):
 - Null (N): $Y \sim 1$, common mean model
 - Linear regression is Reduced (R): $Y \sim X$, regression model
 - ANOVA is Full (F): $Y \sim \text{factor}(X)$, separate mean model

- Notation:
 - Y_{ij} are the data, where j indexes groups and i indexes individuals. (Sums will be taken over all available indices).
 - \bar{Y} is the grand mean
 - \bar{Y}_j is the jth group mean
 - \hat{Y}_{ij} are the fitted values using the regression line.
 - Note that \bar{Y}_j are the fitted values under the ANOVA model that fits group means, $Y \sim \text{factor}(X)$
Sums of Squares

Recall: All sums are over both \(i \) and \(j \) except as noted.

- \(SSTO = \sum(Y_{ij} - \bar{Y})^2 \)
- \(SSR_R = \sum(\hat{Y}_{ij} - \bar{Y})^2 \)
- \(SSE_R = \sum(Y_{ij} - \hat{Y}_{ij})^2 \)
- \(SSTO = SSR_R + SSE_R \)
- \(SSPE = SSE_F = \sum(Y_{ij} - \bar{Y}_j)^2 \)
- \(SSLF = \sum(\bar{Y}_j - \hat{Y}_{ij})^2 = \sum_j n_j (\bar{Y}_j - \hat{Y}_{ij})^2 \)
- \(SSE_R = SSPE + SSLF \)
LOF ANOVA Table

One way to summarize the LOF test is by ANOVA:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>SSR</td>
<td>SSR/1</td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>$r - 2$</td>
<td>SSLF</td>
<td>$MS_{LF} = SSLF / (r - 2)$</td>
</tr>
<tr>
<td>Pure Error</td>
<td>$n - r$</td>
<td>SSPE</td>
<td>$MS_{PE} = SSPE / (n - r)$</td>
</tr>
<tr>
<td>Total</td>
<td>$n - 1$</td>
<td>SSTO</td>
<td></td>
</tr>
</tbody>
</table>

- $E(MS_{PE}) = \sigma^2$ and $E(MS_{LF}) = \sigma^2 + \frac{\sum_{i=1}^{r} n_i (\mu_i - (\beta_0 + \beta_1 x_i))^2}{r - 2}$
- F-test for lack of fit is therefore:
LOF as model comparison

- In fact, the above lack of fit test is doing model comparison
 - our desired model \(Y \sim X \) to the potentially better model \(Y \sim \text{factor}(X) \)
 which would be required if the linear model fit poorly.

- Apply the GLT to compare these two models (are they nested?)

\[
F_{LOF} = \frac{SSE_R - SSE_F}{df_R - df_F} / \frac{SSE_F}{df_F}
\]

- Notice \(SSE_R - SSE_F = SSE_R - SSPE = SSLF \) and \(SSE_F = SSPE \) so
\[
F_{LOF} = MSLF/MSPE
\]
and LOF ANOVA F-test is same as model comparison by \(F_{LOF} \).
Lack of Fit in R

\[
\text{anova}(\text{reduced.lm})
\]

\[
\begin{array}{lcccc}
\text{Df} & \text{Sum Sq} & \text{Mean Sq} & \text{F value} & \text{Pr(>F)} \\
\hline
\text{x} & 1 & 60.95 & 60.950 & 193.07 & 1.395e-09 \\
\text{Residuals} & 14 & 4.42 & 0.316 & \\
\end{array}
\]

\[
\text{full.lm}=\text{lm}(y \sim \text{factor(x)}, \text{purerr})
\]

\[
\text{anova}(\text{full.lm})
\]

\[
\begin{array}{lcccc}
\text{Df} & \text{Sum Sq} & \text{Mean Sq} & \text{F value} & \text{Pr(>F)} \\
\hline
\text{factor(x)} & 7 & 65.272 & 9.3245 & 758.6 & 1.198e-10 \\
\text{Residuals} & 8 & 0.098 & 0.0123 & \\
\end{array}
\]

\[
\text{anova}(\text{reduced.lm}, \text{full.lm})
\]

\[
\begin{array}{lcccc}
\text{Model 1:} & y \sim x \\
\text{Model 2:} & y \sim \text{factor(x)} \\
\text{Res.Df} & \text{RSS} & \text{Df Sum of Sq} & \text{F} & \text{Pr(>F)} \\
1 & 14 & 4.4196 & & \\
2 & 8 & 0.0983 & 6 & 4.3213 & 58.594 & 3.546e-06 \\
\end{array}
\]

Therefore

\[
F_{LOF} = \frac{(SSE_R - SSE_F)/(df_{SSE,R} - df_{SSE,F})}{SSE_F/df_{SSE,F}}
\]

\[
= \frac{(4.42 - 0.098)/(14 - 8)}{0.098/8} = \frac{4.3213/6}{0.0983/8} = 58.594
\]
LOF p-value

- Compare $F = 58.594$ with $F(6, 8)$, p-value $= P(F(6, 8) \geq 58.594) < 0.001$.
- There is very strong evidence of a lack of fit.

ANVOA Table for LOF

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>SSR = 60.950</td>
<td>MSR = 60.950</td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>6</td>
<td>SSLF = 4.322</td>
<td>MSLF = 0.720</td>
</tr>
<tr>
<td>Pure Error</td>
<td>8</td>
<td>SSPE = 0.098</td>
<td>MSPE = 0.0123</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>SSTO = 65.370</td>
<td>-</td>
</tr>
</tbody>
</table>
LOF by hand

The data consist of 16 observations with X repeated at several values:

<table>
<thead>
<tr>
<th>X</th>
<th>4.1</th>
<th>5.1</th>
<th>5.1</th>
<th>5.1</th>
<th>6.3</th>
<th>6.3</th>
<th>7.0</th>
<th>7.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>6.3</td>
<td>7.3</td>
<td>7.4</td>
<td>7.4</td>
<td>7.8</td>
<td>7.7</td>
<td>8.4</td>
<td>10.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>7.9</th>
<th>7.9</th>
<th>8.6</th>
<th>9.4</th>
<th>9.4</th>
<th>9.4</th>
<th>10.2</th>
<th>10.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>10.6</td>
<td>10.9</td>
<td>11.0</td>
<td>11.1</td>
<td>10.9</td>
<td>11.0</td>
<td>12.6</td>
<td>12.8</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between X and Y.](image-url)
Computing SS Pure Error by hand

- There are 5 repeat groups out of 8 groups:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>–</th>
<th>–</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>5.1</td>
<td>6.3</td>
<td>7.9</td>
<td>9.4</td>
<td>10.2</td>
<td>4.1</td>
<td>7.0</td>
<td>8.6</td>
</tr>
<tr>
<td>Y</td>
<td>7.3</td>
<td>7.8</td>
<td>10.8</td>
<td>11.1</td>
<td>12.6</td>
<td>6.3</td>
<td>8.4</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>7.7</td>
<td>10.6</td>
<td>10.9</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>10.9</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_i</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Compute SSPE as

\[
\sum_{i=1}^{3}(Y_{i1} - \bar{Y}_1)^2 + \sum_{i=1}^{2}(Y_{i2} - \bar{Y}_2)^2 + \sum_{i=1}^{3}(Y_{i3} - \bar{Y}_3)^2 \\
+ \sum_{i=1}^{3}(Y_{i4} - \bar{Y}_4)^2 + \sum_{i=1}^{2}(Y_{i5} - \bar{Y}_5)^2
\]
Computing SS Pure Error by hand

- Y_{ij}: the ith observation for the jth group.
- n_j: the number of observations in the jth group.
- c: the number of repeat groups.

In general,

$$SSPE = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_j)^2,$$

$$df\ PE = \sum_{j=1}^{c} (n_j - 1) = n - r$$

In the example, $n_1 = 3, n_2 = 2, n_3 = 3, n_4 = 3, n_5 = 2, c = 5$ and hence $df\ PE$ is $2 + 1 + 2 + 2 + 1 = 8$ and $SSPE = 0.098$.
Computing SS Lack of Fit by Hand

By subtraction. In the example,

- \(SSE = 4.42 \) from the regression ANOVA table on df = 14.
- \(SSPE = 0.098 \) on df = 8.

Thus
\[
SSLF = SSE - SSPE = 4.42 - 0.098 = 4.322.
\]

- df LF = 14 − 8 = 6.
- Note
\[
SSLF = \sum_{j=1}^{c^*} \sum_{i=1}^{n_j} (\bar{Y}_j - \hat{Y}_{ij})^2
\]
where \(k^* \) denotes the number of groups (here \(c^* = 8 \)).
Lack of Fit Test by Hand

- For testing H_0: No lack of fit (here, simple linear regression is adequate) versus H_a: Lack of fit (here, simple linear regression is inadequate).

- Use the fact that, under H_0,
 \[
 F = \frac{SSLF/df_{LF}}{SSPE/df_{PE}} \sim F(df_{LF}, df_{PE}).
 \]

- In the example, the observed F test statistic is
 \[
 F^* = \frac{4.332/6}{0.098/8} = 58.62.
 \]
Lack of Fit Test: Remarks

- Note that the $R^2 = 93.2\%$ is high, but according to the LOF test, the model is still inadequate.
- Possible remedy is to use polynomial regression.
- The repeats need to be independent measurements.
 - If there are no repeats at all, some consider approximate repeat groups by binning the X’s close to one another into groups. In this case, the LOF test is an approximate test.
Remedial Measures

- For simple linear regression, consider two basic approaches.
 - Abandon the current model and look for a better one.
 - Transform the data so that the simple linear regression model is appropriate.

- Nonlinearity of regression function:
 - Transformation (X or Y or both)
 - Polynomial regression.
 - Nonlinear regression.

- Nonconstancy of error variance:
 - Transformation (Y)
 - Weighted least squares.
Remedial Measures

- Simultaneous nonlinearity and nonconstant variance
 - Sometimes works to...
 - Transform Y to fix variance then
 - Transform X to fix linearity

- Nonindependence of error terms:
 - First-order differencing.
 - Models with correlated error terms.

- Nonnormality of error terms.
 - Transformation.
 - Generalized linear models.

- Presence of outliers:
 - Removal of outliers (with extreme caution).
 - Analyze both with and without outliers
 - Robust estimation.
 - New model.
Example: bacteria

Data consist of number of surviving bacteria after exposure to X-rays for different periods of time. Let \(t \) denote time (in number of 6-minute intervals) and let \(n \) denote number of surviving bacteria (in 100s) after exposure to X-rays for \(t \) time.

<table>
<thead>
<tr>
<th>(t)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>355</td>
<td>211</td>
<td>197</td>
<td>166</td>
<td>142</td>
<td>166</td>
<td>104</td>
<td>60</td>
</tr>
<tr>
<td>(t)</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>56</td>
<td>38</td>
<td>36</td>
<td>32</td>
<td>21</td>
<td>19</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Example: bacteria

We fit a simple linear regression model to the data.

- It appears that the linear-line model is not adequate.
- The assumption of correct model seems to be violated.
- What to do?
Example: bacteria

- Consider nonlinear model (why nonlinear?)

\[n_t = n_0 e^{\beta t}, \]

where \(t \) is time, \(n_t \) is the number of bacteria at time \(t \), \(n_0 \) is the number of bacteria at \(t = 0 \), and \(\beta < 0 \) is a decay rate.

- Take natural logs of both sides of the model, we have,

\[
\ln(n_t) = \ln(n_0) + \ln(e^{\beta t}) = \ln(n_0) + \beta t
\]

\[
= \alpha + \beta t,
\]

by setting \(\alpha = \ln(n_0) \).

- That is, we log-transformed \(n_t \) and the result is a usual linear-line model!
Example: bacteria

The transformed data are as follows.

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(n)$</td>
<td>5.87</td>
<td>5.35</td>
<td>5.28</td>
<td>5.11</td>
<td>4.96</td>
<td>5.11</td>
<td>4.64</td>
<td>4.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(n)$</td>
<td>4.03</td>
<td>3.64</td>
<td>3.58</td>
<td>3.47</td>
<td>3.04</td>
<td>2.94</td>
<td>2.71</td>
</tr>
</tbody>
</table>

It appears that the linear-line model is now adequate. The residual plot now shows a random scatter.
Example: bacteria

Based on the log-transformed counts, we can fit the model to get the LS estimates

\[\hat{\alpha} = 6.029, \quad \hat{\beta} = -0.222, \quad s_{\ln(N) \cdot t} = 0.1624, \quad R^2 = 0.9757. \]

- Inference for \(\beta \) is straightforward. [Unit? Interpretation?]
- Inference for \(\alpha \) is straightforward. [Unit? Interpretation?]
- Inference for \(n_0 \) is not straightforward.
 - Since \(\alpha = \ln(n_0) \), \(n_0 = e^\alpha \).
 - Given \(\hat{\alpha} = 6.029 \), we obtain an estimate of \(n_0 \)
 \[\hat{n}_0 = e^{\hat{\alpha}} = 415.30. \]
 - But the estimate \(\hat{n}_0 \) is biased (i.e., \(E(\hat{n}_0) \neq n_0 \)).
The purpose of transformation is to meet the assumptions of the linear regression analysis.

<table>
<thead>
<tr>
<th>Linear Models</th>
<th>Nonlinear Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1) $Y = \beta_0 + \beta_1 X$</td>
<td>(N1) $Y = \alpha e^{\beta X} \rightarrow \ln(Y) = \ln(\alpha) + \beta X$</td>
</tr>
<tr>
<td>(L2) $Y = \beta_0 + \beta_1 X^2$</td>
<td>(N2) $Y = \alpha X^{\beta} \rightarrow \ln(Y) = \ln(\alpha) + \beta \ln(X)$</td>
</tr>
<tr>
<td>(L3) $Y = \beta_0 + \beta_1 e^X$</td>
<td>(N3) $Y = \alpha + e^{\beta X}$</td>
</tr>
</tbody>
</table>

- In (L2) and (L3), the relationship between X and Y is not linear, but the model is linear in the parameters and hence the model is linear.
- In (N1) and (N2), the model is nonlinear, but can be log-transformed to a linear model (i.e., linearized).
- In (N3), the model is nonlinear and cannot be linearized.
Transformation: Remarks

- Transformation could be for X, or Y, or both. Common transformations are $\log_{10}\{Z\}$, $\ln\{Z\}$, \sqrt{Z}, and Z^2. Less common transformations include $1/Z$, $1/Z^2$, $\arcsin\sqrt{Z}$, and $\log_2\{Z\}$.

- Another use of transformation is to control unequal variance.
 - Example: If Y are counts, then often larger variances are associated with larger counts. In this case, \sqrt{Y} transformation can help stabilize variance.
 - Example: If Y are proportions (of successes among trials), then $\text{Var}(Y) = \pi(1 - \pi)/n$, which depends on the true success rate π. Residual plots would reveal the unequal variance problem. In this case, $\arcsin(\sqrt{Y})$ transformation can help stabilize variance.

- Rule of thumbs: positive data - use $\log Y$; data are proportions - use $\arcsin\sqrt{Y}$; data are counts - use \sqrt{Y}
Transformation: Remarks

- Ideally, theory should dictate what transformation to use as in the bacteria count example. But in practice, transformation is usually chosen empirically.
- Transforming Y can affect both linearity and variance homogeneity, but transforming X can affect only linearity.
- Sometimes solving one problem can create another. For example, transforming Y to stabilize variance causes curved relationship.
- Usually it is best to start with a simple transformation and experiment. It happens often that a simple transformation allows the use of the linear regression model. When needed, use more complicated methods such as nonlinear regression.
- Transformations are useful not only for simple linear regression, but also for multiple linear regression and design of experiment.
Variance Stabilizing Transformations

- If $\text{Var}(Y) = g(\mathbb{E}(Y))$, then a variance stabilizing transform is

$$h(y) \propto \int (g(z))^{-1/2} dz$$

- Example:
 - if var \propto mean, then $g(z) = z$ and $h(y) = \sqrt{y}$
 - if var \propto mean2, then $g(z) = z^2$ and $h(y) = \ln(y)$
 - if var \propto mean(1-mean), then $g(z) = z(1-z)$, then $h(y) = \sin^{-1} \sqrt{y}$
Box-Cox Transformation

- Consider a transformation ladder for $Z = X$ or Y.

\[
\begin{array}{cccccccc}
\lambda & \cdots & -2 & -1 & -0.5 & 0 & 0.5 & 1 & 2 & \cdots \\
\hline
Z' & \cdots & \frac{1}{Z^2} & \frac{1}{Z} & \frac{1}{\sqrt{Z}} & \log(Z) & \sqrt{Z} & Z & Z^2 & \cdots
\end{array}
\]

- Moving up or down the ladder (starting at 1) changes the residual plots in a consistent manner. Use only these choices for manual search, too!
- Box-Cox method is a formal approach to selecting λ to transform Y.

- The idea is to consider $Y_i^\lambda = \beta_0 + \beta_1 X_i + \epsilon_i$.
- Estimate λ (along with $\beta_0, \beta_1, \sigma^2$) using maximum likelihood.
- Box-Cox method may give $\hat{\lambda} = -0.512$. Round to the nearest interpretable value $\hat{\lambda} = -0.5$.
- If $\hat{\lambda} \approx 1$, do not transform.
- In R, boxcox gives a 95% CI for λ. Choose an interpretable $\hat{\lambda}$ within the CI.
Box-Cox Transformation

- Box-Cox family of transformations

\[Z = Y^\lambda I(\lambda \neq 0) + \ln(Y) \]

- Estimate \(\lambda \) using maximum likelihood or use the variance - mean relationship

- Using variance-mean relationship to estimate \(g(Y) \)
 - works for 2 groups or many groups (ANOVA presented in near future)
 - Compute \(\bar{Y} \) and \(S_Y \) for each group
 - Regress \(\log(S_Y) \) on \(\log(\bar{Y}) \) and estimate the slope \(\beta \)
 - Use transformation \(Y^\lambda \) with \(\lambda = 1 - \beta \)
Box-Cox Transformation

- When does this work
 - model for variability
 \[\sigma = \sqrt{\text{Var}(Y)} = k\mu^\beta \]
 - or
 \[\text{Var}(Y) = \sigma^2 = [k\mu^\beta]^2 := g(\mu) \]
 - Use the delta method to obtain the transformation: \(Z = g(Y) = Y^\lambda \)

- Consider the Taylor expansion
 \[Z = g(Y) \approx g(\mu) + (Y - \mu)g'(\mu) \]
 then an approximation for \(\text{Var}(g(\mu)) \) is
 \[\text{Var}(g(Y)) \approx [g'(\mu)]^2 \text{Var}(Y) \]
 which is the famous Delta Method
Box-Cox Transformation

- For $Z = g(Y) = Y^\lambda$ we have

$$\frac{dZ}{dY} = g'(Y) = \lambda Y^{\lambda-1}$$

- From the Delta method

$$\text{Var}(Z) = (\lambda \mu^{\lambda-1})^2 (k \mu^\beta)^2 = k^2 \lambda^2 \mu^2 (\lambda-1+\beta)$$

- When $\lambda = 1 - \beta$, $\text{Var}(Z) \approx k^2 \lambda^2$ is approximately constant

- Analyze the transformed data: e.g.,

 $Z_{11} = \ln(Y_{11}), Z_{12} = \ln(Y_{12}), \ldots, Z_{2,n_2} = \ln(Y_{2,n_2})$

- Usually round to a reasonable value if β is not an integer as discussed above

- Caution: Some researchers estimate the slope from the regression of

 $\ln(\text{Var}(Y))$ on $\ln(\bar{Y})$ then use the transform $Z = Y^\lambda$ with $\lambda = 1 - \beta/2$.