Simultaneous Inference: An Overview

Topics to be covered:

- Joint estimation of β_0 and β_1.
- Simultaneous estimation of mean responses.
- Simultaneous prediction intervals.
We learned how to construct individual CIs for β_0 and β_1.

Statement confidence coefficient: Indicates the proportion of correct estimates that are obtained when repeated samples are selected and the specified CI is calculated for each sample.

However, individual CIs do not provide 95% confidence that the conclusions for both β_0 and β_1 are correct.

For example, if inferences are independent, then

$$P(\text{Both CIs are correct}) = 0.95^2 = 0.9025.$$

For 10 independent CIs,

$$P(\text{At least one is wrong}) =$$
Statement Confidence Coefficient

- We learned how to construct individual CIs for β_0 and β_1.
- Statement confidence coefficient: Indicates the proportion of correct estimates that are obtained when repeated samples are selected and the specified CI is calculated for each sample.
- However, individual CIs do not provide 95% confidence that the conclusions for both β_0 and β_1 are correct.
- For example, if inferences are independent, then

$$P(\text{Both CIs are correct}) = 0.95^2 = 0.9025.$$

- For 10 independent CIs,

$$P(\text{At least one is wrong}) =$$
Family Confidence Coefficient

- Family confidence coefficient: Indicates the proportion of families of estimates that are entirely correct when repeated samples are selected and the specified CIs for the entire family are calculated for each sample.

- For example, with a family confidence coefficient of 0.95 for β_0 and β_1, we can say that
 “In repeated samples, for 5% of the samples, either the CI for β_0, or the CI for β_1, or both CIs would not cover the true values.

- Are simultaneous intervals generally wider or narrower than individual CIs?
Bonferroni Idea

- Main idea: Each statement confidence coefficient is adjusted to be higher than $1 - \alpha$, so the family confidence coefficient is at $1 - \alpha$.
- Consider the individual $(1 - \alpha)$ CI for β_0 and $(1 - \alpha)$ CI for β_1.
- Let $A_1 = $ the event that CI for β_0 does not cover β_0.
- Let $A_2 = $ the event that CI for β_1 does not cover β_1.
- Thus $P(A_1) = \alpha$ and $P(A_2) = \alpha$.
- Bonferroni inequality (shown in the next slide):
 \[P(\text{both cover}) \geq 1 - 2\alpha. \]
- Thus if each CI is constructed with $(1 - \alpha/2)100\%$ confidence, then the joint confidence level will be at least $(1 - \alpha)100\%$.
Bonferroni Idea

- Main idea: Each statement confidence coefficient is adjusted to be higher than $1 - \alpha$, so the family confidence coefficient is at $1 - \alpha$.
- Consider the individual $(1 - \alpha)$ CI for β_0 and $(1 - \alpha)$ CI for β_1.
- Let $A_1 =$ the event that CI for β_0 does not cover β_0.
- Let $A_2 =$ the event that CI for β_1 does not cover β_1.
- Thus $P(A_1) = \alpha$ and $P(A_2) = \alpha$.
- Bonferroni inequality (shown in the next slide):

 $$P(\text{both cover}) \geq 1 - 2\alpha.$$

- Thus if each CI is constructed with $(1 - \alpha/2)100\%$ confidence, then the joint confidence level will be at least $(1 - \alpha)100\%$.
Bonferroni Justification

- Show the Bonferroni inequality for 2 CIs
Bonferroni Joint Confidence Intervals

Bonferroni \((1 - \alpha)\) joint CIs for \(\beta_0\) and \(\beta_1\) are

\[
\hat{\beta}_0 \pm t(1 - \alpha/4; n - 2)s\{\hat{\beta}_0\} \\
\hat{\beta}_1 \pm t(1 - \alpha/4; n - 2)s\{\hat{\beta}_1\}
\]

Interpretation: The family confidence coefficient is at least \((1 - \alpha)\) that the procedure leads to the correct set of CIs.

In the advertising example, recall that

\[
\hat{\beta}_0 = 0.35, \quad s\{\hat{\beta}_0\} = 0.347, \quad \hat{\beta}_1 = 1.36, \quad s\{\hat{\beta}_1\} = 0.0886.
\]

At \(\alpha = 0.10\), \(t(1 - \alpha/4; n - 2) = t(0.975; 5) = 2.571\).

Thus Bonferroni 90% joint CIs for \(\beta_0\) and \(\beta_1\) are

\[
0.35 \pm 2.571 \times 0.347 = 0.35 \pm 0.89 = (-0.54, 1.24) \\
1.36 \pm 2.571 \times 0.0886 = 1.36 \pm 0.23 = (1.13, 1.59)
\]
Bonferroni Joint Confidence Intervals

- Bonferroni \((1 - \alpha)\) joint CIs for \(\beta_0\) and \(\beta_1\) are

 \[
 \hat{\beta}_0 \pm t(1 - \alpha/4; n - 2)s\{\hat{\beta}_0\} \\
 \hat{\beta}_1 \pm t(1 - \alpha/4; n - 2)s\{\hat{\beta}_1\}
 \]

- Interpretation: The family confidence coefficient is at least \((1 - \alpha)\) that the procedure leads to the correct set of CIs.

- In the advertising example, recall that

 \[
 \hat{\beta}_0 = 0.35, \quad s\{\hat{\beta}_0\} = 0.347, \quad \hat{\beta}_1 = 1.36, \quad s\{\hat{\beta}_1\} = 0.0886.
 \]

- At \(\alpha = 0.10\), \(t(1 - \alpha/4; n - 2) = t(0.975; 5) = 2.571\).

- Thus Bonferroni 90% joint CIs for \(\beta_0\) and \(\beta_1\) are

 \[
 0.35 \pm 2.571 \times 0.347 = 0.35 \pm 0.89 = (-0.54, 1.24) \\
 1.36 \pm 2.571 \times 0.0886 = 1.36 \pm 0.23 = (1.13, 1.59)
 \]
In general, for \(g \geq 2 \) CIs with a family confidence coefficient of \(1 - \alpha \), construct individual CIs with statement confidence coefficient \((1 - \frac{\alpha}{g}) \).

- The \((1 - \alpha) \) level is a lower bound and the statements are correct more than \((1 - \alpha)100\% \) of the time.
- Thus the Bonferroni procedure can be extremely conservative if \(g \) is large, producing overly wide intervals.
- Therefore method is more suitable when \(g \) is quite small.

The Bonferroni idea is easy to understand and can be applied in general to construct CIs for parameters, PIs for new observations, etc.
We learned how to construct an individual CI for $E(Y_h)$ at a given level X_h and for a given statement confidence coefficient.

Now consider simultaneous estimation of several $E(Y_h)$ at several levels of X_h for a given family confidence coefficient.

Two methods:

- Working-Hotelling procedure.
- Bonferroni procedure.
Working-Hotelling Procedure

- Working-Hotelling \((1 - \alpha)\) simultaneous CIs for \(g\) mean responses:

\[
\hat{Y}_h \pm W s\{\hat{Y}_h\}
\]

where

\[
\hat{Y}_h = \\
s\{\hat{Y}_h\} = \\
W^2 =
\]

- This has a \((1 - \alpha)\) family confidence coefficient on the entire regression line.
- That is, the proportion of time the estimating procedure will yield a confidence band that covers the entire regression line is \((1 - \alpha)\).
Properties of Working-Hotelling Procedure

- WH provides a \((1 - \alpha)\) family confidence coefficient on the entire regression line.
 - That is, the proportion of time the estimating procedure will yield a confidence band that covers the entire regression line is \((1 - \alpha)\).
- \(W > t\) because confidence band must encompass the entire regression line, not merely \(E(Y_h)\).
- Bands are parabolas.
- WH is not the only good choice, but it is straightforward.
- WH is similar to Scheffé procedure (later).
Example

- In the advertising example, estimate the expected sale at advertising expenditure levels 3, 5, and 7.
- Compute $W = \sqrt{2F(0.95; 2, 5)} = 3.402$ and

$$
\begin{array}{c|ccc}
 X_h & 3 & 5 & 7 \\
 \hline
 \hat{Y}_h & 4.41 & 7.12 & 9.83 \\
 s\{\hat{Y}_h\} & 0.164 & 0.207 & 0.349 \\
\end{array}
$$

- Working-Hotelling 95% simultaneous CIs for 3 mean responses are

$$
\begin{align*}
4.41 & \pm 3.402 \times 0.164 = 4.41 \pm 0.56 = (3.85, 4.97) \\
7.12 & \pm 3.402 \times 0.207 = 7.12 \pm 0.70 = (6.42, 7.82) \\
9.83 & \pm 3.402 \times 0.349 = 9.83 \pm 1.19 = (8.64, 11.02)
\end{align*}
$$
Bonferroni Procedure

- Bonferroni \((1 - \alpha)\) simultaneous CIs for \(g\) mean responses:

\[
\hat{Y}_h \pm Bs\{\hat{Y}_h\}
\]

where

\[
\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h
\]

\[
s\{\hat{Y}_h\} = \sqrt{MSE \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2} \right]}
\]

\[
B = \sqrt{MSE \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2} \right]}
\]
Bonferroni Procedure

- In the advertising example, estimate the expected sale at advertising expenditure levels 3, 5, and 7.
- Compute $B = t(1 - 0.05/6; 5) = 3.534$ and

\[
\begin{array}{ccc}
X_h & 3 & 5 & 7 \\
\hat{Y}_h & 4.41 & 7.12 & 9.83 \\
 s\{\hat{Y}_h\} & 0.164 & 0.207 & 0.349 \\
\end{array}
\]

- Bonferroni 95% simultaneous CIs for 3 mean responses are

\[
\begin{align*}
4.41 & \pm 3.534 \times 0.164 = 4.41 \pm 0.58 = (3.83, 4.99) \\
7.12 & \pm 3.534 \times 0.207 = 7.12 \pm 0.73 = (6.39, 7.85) \\
9.83 & \pm 3.534 \times 0.349 = 9.83 \pm 1.23 = (8.60, 11.06)
\end{align*}
\]
Simultaneous Estimation of Mean Responses: Remarks

- Both Working-Hotelling and Bonferroni procedures provide lower bounds to the actual family confidence coefficient.
- For larger g, the Working-Hotelling confidence limits are tighter than the Bonferroni limits.
- The Working-Hotelling procedure encompasses all possible levels of X.
- In this class, we focus on the Working-Hotelling procedure.
Simultaneous Prediction Intervals

- We learned how to construct an individual PI for $Y_{h(new)}$ at a given level X_h and for a given statement confidence coefficient.

- Now consider simultaneous prediction of g new observations on Y at g different levels of X_h and for a given family confidence coefficient.

- Two methods:
 - Scheffé procedure.
 - Bonferroni procedure.

- Recall

\[
\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h
\]

\[
s\{\text{pred}\} = \sqrt{MSE \left[1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2} \right]}
\]
Simultaneous PIs for g Predictions

- Let the family confidence coefficient be $(1 - \alpha)$.

- Scheffé procedure:
 $$\hat{Y}_h \pm Ss\{\text{pred}\}$$
 where

- Bonferroni procedure:
 $$\hat{Y}_h \pm Bs\{\text{pred}\}$$
 where
Simultaneous PIs for g Predictions

- In the advertising example, predict new observations of sale at advertising expenditure levels 3, 5, and 7.

- Compute

<table>
<thead>
<tr>
<th>X_h</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{Y}_h</td>
<td>4.41</td>
<td>7.12</td>
<td>9.83</td>
</tr>
<tr>
<td>$s{\text{pred}}$</td>
<td>0.450</td>
<td>0.467</td>
<td>0.545</td>
</tr>
</tbody>
</table>
Simultaneous PIs for g Predictions

- With $S = \sqrt{3F(0.95; 3, 5)} = 4.028$, Scheffé 95% simultaneous PIs are

 $4.41 \pm 4.028 \times 0.450 = 4.41 \pm 1.81 = (2.60, 6.22)$
 $7.12 \pm 4.028 \times 0.467 = 7.12 \pm 1.88 = (5.24, 9.00)$
 $9.83 \pm 4.028 \times 0.545 = 9.83 \pm 2.20 = (7.63, 12.03)$

- With $B = t(1 - 0.05/6; 5) = 3.534$, Bonferroni 95% simultaneous PIs are

 $4.41 \pm 3.534 \times 0.450 = 4.41 \pm 1.54 = (2.82, 6.00)$
 $7.12 \pm 3.534 \times 0.467 = 7.12 \pm 1.65 = (5.47, 8.77)$
 $9.83 \pm 3.534 \times 0.545 = 9.83 \pm 1.93 = (7.90, 11.76)$
Simultaneous Prediction Intervals: Remarks

- For a given α, the simultaneous PIs for g new observations are wider than individual PIs.
- Of course, the prediction intervals are wider than the confidence intervals for mean responses.
- For prediction, both B and S increase as g increases, unlike the simultaneous CIs for the mean responses where B increases with g but W does not.
- Both B and S can be (very) conservative as g increases.