David Allison
Back Home Up Next

Russell D. Wolfinger
David Allison
Jenny Bryan
Lai-Har Chi
Jane Chang
Philip Dixon
Kent M. Eskridge
Deborah Glueck
David L. Gold
Susan G. Hilsenbeck
Lawrence Hunter
Rebecka Jornsten
Steen Knudsen
Laura Lazzeroni
Chen-Tuo Liao
Peter Munson
Dan Nettleton
Wei Pan
David M. Rocke
Grace S. Shieh
Lue Ping Zhao
Deepak Mav
Annette Molinaro

Applying High-Dimensional Approaches to Microarray Research

David Allison, Statistical Genetics, University of Alabama-Birmingham

Although termed the post-genomic era, our age may be more accurately labeled the genomic era. Draft sequences of several genomes coupled with new technologies allow study of the influences and responses of entire genomes rather than isolated single genes. This opens a new realm of highly dimensional biology (HDB) where questions involve multiplicity at unprecedented scales. HDB can involve thousands of genetic polymorphisms, gene expression levels, protein measurements, genetic sequences, or any combination of these and their interactions. Such situations demand creative approaches to the processes of inference, estimation, prediction, classification, and study design. Although bench scientists intuitively grasp the need for flexibility in the inferential process, elaboration of formal statistical frameworks supporting this are just beginning. I will discuss some of the unique statistical challenges facing investigators studying high-dimensional biology, describe some approaches being developed by scientists at UAB and elsewhere and offer an epistemological framework for the validation of proffered statistical procedures.

Graybill Conference
June 18-20, 2003
University Park Holiday Inn
Fort Collins, CO 80526
email: hari@stat.colostate.edu Fax: (970)491-7895 Phone: (970)491-5269
Last Updated: Wednesday, March 12, 2003